GAS FURNACES

SERVICE CERTIFICATION

Certification Information

Scope - Tests a candidate's knowledge of the installation, service, maintenance, and repair of HVAC systems. System sizes are limited to 400,000 BTU or less heating capacity.

Oualifications

- Y This is a test and certification for **TECHNICIANS** in the HVAC industry. The test is designed for top level service technicians. This test for certification is not intended for the HVAC system designer, sales force, or the engineering community. To become NATE-certified, you must pass this specialty and a CORE SERVICE exam.
- Y This test will measure what 80% of the **Gas Furnaces** candidates have an 80% likelihood of encountering at least once during the year on a **NATIONAL** basis.
- Y Suggested requirement is two years of field experience working on Gas Furnaces systems as a service technician and technical training for theoretical knowledge.

Test Specifications

Closed Book 2.5 Hour Time Limit 100 Questions Passing Score: PASS/FAIL

Listed are the percentages of questions that will be in each section of the Gas Furnaces exam.

SECTION AREA DESCRIPTION	SECTION PERCENTAGE
Installation	20%
Service	45%
System Components	25%
Applied Knowledge	10%

Gas Furnaces Industry References

The reference materials listed below will be helpful in preparing for this exam. These materials may <u>NOT</u> contain all of the information necessary to be competent in this specialty or to pass the exam.

- American National Standards Institute (ANSI) / Air Conditioning Contractors of America (ACCA) Manuals Latest Edition
 - "D", "J", "QI" Quality Installation, and "S"
- ACCA Manuals "T" and "RS" Latest Editions
- ACCA Residential Duct Diagnostics and Repair Latest Edition
- AHRI-Hydronics Section-IBO/RAH Latest Edition
- International Energy Conservation Code Latest Edition with Addendum
- International Mechanical Code Latest Edition with Addendum
- International Plumbing Code Latest Edition with Addendum
- Uniform Mechanical Code Latest Edition with Addendum
- Specification of Energy-Efficient Installation and Maintenance Practices for Residential HVAC Systems developed by Consortium for Energy Efficiency (CEE) Latest Edition with Addendum
- ASHRAE Standard-62.2 Latest Edition with Addendum
- ANSI / ASHRAE Standard-152-2004 Latest Edition with Addendum
- ENERGY STAR™ Home Sealing Standards Latest Edition with Addendum
- Duct Calculators Sheet Metal, Ductboard, and Flexible Duct
- American National Standards Institute (ANSI) / Sheet Metal and Air Conditioning Contractors' National Association, Inc. (SMACNA) Manuals
 - HVAC Duct Construction Standards Metal and Flexible
- Sheet Metal and Air Conditioning Contractors' National Association, Inc. (SMACNA) Manuals
 - Fibrous Glass Duct Construction Standards, Residential Comfort System Installation Standards Manual, and HVAC Air Duct Leakage Test Manual
- Air Diffusion Council Flexible Duct Performance & Installation Standards
 - North American Insulation Manufacturers Association (NAIMA) Manuals
 - Fibrous Glass Duct Construction Standards and A Guide to Insulated Air Duct Systems
- International Fuel Gas Code Latest Edition with Addendum
- National Fuel Gas Code Latest Edition with Addendum

Passing Score Development Process

The passing scores for the NATE tests were established using a systematic procedure (a Passing Score Study). This procedure employed the judgment of experienced HVAC professionals and educators representing various HVAC specialties and geographical areas. The passing scores were set using criteria defining competent performance. The passing score for different test forms may vary slightly due to the comparative difficulty of the test questions.

Exam Copyrights

All testing documents and questions are the copyrighted property of North American Technician Excellence Inc.-NATE. It is forbidden under federal copyright law to copy, reproduce, record, distribute or display these documents or questions by any means, in whole or part, without written permission from NATE. Doing so may subject you to severe civil and/or criminal penalties, including imprisonment and/or fines for criminal violations.

Heating - Warm Air - Gas

Service

INSTALLATION

INSTALLING GAS FURNACES

SELECTING GAS FURNACE SITES

Locating furnaces in attics

Locating furnaces in crawlspaces

Locating furnaces in closets

Locating furnaces in basements

Locating furnaces in utility rooms

Locating furnaces in garages

Locating packaged furnaces on rooftops

Locating packaged furnaces for outdoor ground level installations

MOUNTING FURNACES

How to suspend horizontal furnaces in attics

How to suspend horizontal furnaces in crawlspaces

How to mount horizontal furnaces on attic floors

How to mount upflow / downflow furnaces in closets

How to mount upflow / downflow furnaces in basements

How to mount upflow / downflow furnaces in utility rooms

How to mount upflow / downflow furnaces in garages

How to mount packaged furnaces on rooftops

How to mount packaged furnaces for outdoor ground level installations

INSTALLATION OF UTILITIES

Installation of gas piping Installation of field wiring Convert from gas to LP Pressure testing

INSTALLATION OF METAL VENTING SYSTEMS

Determination of routing Cutting of metal vent systems to proper length Assembly of metal vent systems Securing of metal vent systems Installation of vent termination

INSTALLATION OF PVC / ABS VENTING SYSTEMS

Determination of routing Cutting PVC & ABS pipe to proper length Dryfitting the assembly Sealing PVC pipe Sealing ABS pipe Securing of pipe Installation of vent termination

INSTALLATION OF CONDENSATE DRAINS FOR CONDENSING F

Determination of routing Cutting PVC pipe to proper length Dryfitting the assembly Sealing PVC pipe Securing of pipe Installation of condensate drain pan - attic installations Installation of condensate drain pumps

DUCT INSTALLATION

DUCT FABRICATION EQUIPMENT

Ductboard tools - 90 V-groove, end cutoff, female shiplap, hole cutter, stapler, etc.

Flex tools - tensioning strap tools, knives, etc.

Metal tools - metal snips, sheers, benders, breaks, hand formers, calipers, rulers, stapler, etc.

FIELD CONSTRUCTION / INSTALLATION

Ductboard installation technique

Techniques for joining dissimilar duct

Duct of alternate materials - wood, aluminum, etc.

INSTALLING METAL DUCT

Assembly methods for rectangular duct Installation technique - rectangular metal Assembly methods for round duct Installation technique - round metal Hanging ductwork Sealing metal duct Insulation - internal and external, vapor barriers Assembling for low noise and low pressure drop

INSTALLING FLEXIBLE DUCT

Assembly methods - appropriate length Flexible duct joints Hanging flexible duct Installation technique - flex duct Sealing flexible duct

INSTALLING DUCTBOARD

Assembly methods for ductboard - supports Installation technique - ductboard Hanging methods for ductboard Sealing ductboard

INSTALLING GRILLES, REGISTERS, DIFFUSERS, & DAMPER

Mounting to ductwork Securing methods

CHASES USED AS DUCTS

Floor joists as air ducts Vertical chases

RECONNECTING DUCT WHEN REPLACING EQUIPMENT

Reconnecting metal duct Reconnecting flexible duct Reconnecting ductboard duct

INSTALLATION OF PLENUMS AND DUCTS

Sizing plenums for physical fit Types and styles of plenums selected Insulation of plenums

INSTALLING ACCESSORIES

INSTALLING THERMOSTATS

Locating and mounting Wiring electromechanical thermostats Wiring electronic thermostats Programming of electronic thermostats

INSTALLING HUMIDIFIERS

Installing humidifiers Wiring humidifiers Controlling humidifiers

INSTALLING ELECTRONIC AIR CLEANERS

Installing electronic air cleaners Wiring electronic air cleaners Controlling electronic air cleaners

INSTALLING ECONOMIZERS

Installing economizers Wiring economizers Controlling economizers

START-UP AND CHECKOUT

PRE-START PROCEDURES

Gas supply and proper shutoff Electrical Adequate combustion air provisions Venting system Ductwork system Condensate system

START-UP PROCEDURES AND CHECKS

Voltage checks Check thermostat and set heat anticipator Motor checks Airflow checks Check call for heat sequences Manifold gas pressure check Flame quality check Firing rate

LEAK DETECTION TOOLS

Soap solution Electronic leak detectors Ultrasonic leak detector Pressurization for leak detection Meter calibration and maintenance

AIRFLOW MEASUREMENTS

AIRFLOW VELOCITY MEASUREMENTS

Pitot tube and manometer in measuring static pressure

Discharge velocity equipment

Velometer - electronic and mechanical

Anemometer

Velocity measurement procedures

Gauge calibration

Introduction to airflow in Residential HVAC Velocity

AIRFLOW PRESSURE MEASUREMENTS

Overview of static pressure measurements

Inclined manometer

Diaphragm type differential pressure gauge

U-tube manometer

Electronic manometer / pressure measurement

Gauge / meter calibration

Absolute vs. Gauge Pressure

Static pressure

Air pressure measurement terminology

Velocity pressure

Total pressure

AIR VOLUME MEASUREMENTS

Airflow hood

Formulae for determining CFM of air

Formulae for weight of air

Locations for air volume measurements

Airflow volume - CFM / SCFM (Static CFM)

SERVICE

PLANNED MAINTENANCE

MECHANICAL PM CHECKS

Filters

Lubrication

Packaged unit cabinet care Fan blades / blower scroll

Gas connections

Flue / vent stack inspection

Combustion air supply

Duct

Heat exchanger

Burner assembly

Airflow

ELECTRICAL PM CHECKS

General wiring

Induced draft motor

Supply air motor Operation sequence

COMBUSTION PM CHECKS

Sequence of operation checks Air intake / exhaust Flame color Flame size Ignition Temperature rise

DIAGNOSTICS

TROUBLESHOOTING SEQUENCE OF OPERATION

Check for proper sequence of operation Interpreting system at sequence interruption

ANALYZING REPORTED SYMPTOMS

Insufficient / no heat Short cycle Humidity problems Drafty Noise problems System runs continuously High utility bills Wide swings in room temperatures Air quality

SYSTEM AIR SIDE DIAGNOSTICS

Temperature checks Check system static pressure Check system velocity

ELECTRICAL CIRCUIT CHECKS

Supply voltage Indoor blowers Wall thermostat Transformers Electronic controllers - input / output Flame rectification Pilot ignition Thermocouple / power pile generator Gas valve

ELECTRICAL COMPONENT CHECKS

Thermostat Transformers Overcurrent protection Relays and contactors Capacitors Pressure controls Limit controls Centrifugal switch Door interlock switch

REPAIR

Electrical wiring Electrical components Fuel supply Flue stack / venting system Condensate / drain system

REPLACEMENTS

Transformers Relays and contactors Indoor blowers Capacitors Heat exchanger Gas valve

Safety circuit switches Draft motor Pilot / ignitor assembly Flame sensing rod

VENT SYSTEM CHECKS

Natural / gravity draft Forced draft

DIAGNOSING GAS COMBUSTION PROBLEMS

Flame "roll-out" Flame "lift-off" Discolored flame Intermittent flame Partial burner flame Delayed ignition Carbon build up Flashback Trip on high limit Carbon Monoxide

OVERVIEW OF ELECTRICAL TROUBLESHOOTING

LOW VOLTAGE CIRCUITS

- Voltage tests
- Control string analysis
- Understanding the logic of low voltage troubleshooting
- Troubleshooting equipment with electronic devices.
- Troubleshooting with schematics
- Troubleshooting without schematics
- Current tests
- Equipment continuity tests
- Ground tests

LINE VOLTAGE CIRCUITS

- Voltage tests Current tests Component tests Circuit tracing line voltages Troubleshooting with schematics
- Troubleshooting without schematics
- Equipment continuity tests
- Ground tests

GAS PRESSURE MEASUREMENTS & DETECTION

PRESSURE MEASUREMENTS

- Manometer Dial gauge
- Diai Suage

LEAK DETECTION

Leak detection solution

Electronic leak detectors

FLUE GAS ANALYSIS & LEAK DETECTION

FLUE GAS ANALYSIS

O2 measurements Carbon Dioxide measurements

LEAK DETECTION

Carbon Monoxide detector - electrical Carbon Monoxide detector - manual-monoxor

AIR BALANCING

GATHERING DESIGN INFORMATION

Interpreting system design Interpreting specifications Interpreting equipment information Interpreting control data Modifying system design PREPARATION OF SYSTEM FOR AIR TESTS

Locating registers, grilles, equipment, controls, and dampers in building walkthrough Setting dampers for tests Setting thermostat for tests Checking for proper fan operation and rotation Checking for proper static pressure and temperature

PROCEDURES FOR CONDUCTING AIR TESTS

Measurements of each supply outlet - total readings Measurements of each return inlet - total readings

MAKING ADJUSTMENTS

Adjust airflow to achieve required total airflow Remeasure total supply and return grille airflow Adjust dampers to obtain design airflow Re-measure total airflow to verify that it is within +/- 10%

FINAL TEST

Comparing manufacturer's equipment information with test results Record sheave, pulley, and belt sizes data

Test and record full load motor amperes

Test and record voltage

Test and record motor and fan RPM

Test and record supply and return static pressures

Test and record supply and return air temperatures - heat and cool

COMPLETION OF APPROPRIATE FORMS

HVAC system report System diagrams Duct traverse or data pulley forms Instrument list - including calibration dates

BASIC HVAC SYSTEM ANALYSIS

NOISE PROBLEMS

Interpreting supply / return air volume Interpreting supply / return air velocity Noise problems Blower cavitation Oil canning Motor / belt noise Vibration

HIGH UTILITY BILLS

Interpreting supply / return air temperature Interpreting supply / return air volume Evaluating duct leakage Evaluating duct insulation Envelope infiltration

Thermostat air sensing

WIDE TEMPERATURE SWINGS

Interpreting supply / return air temperature Interpreting supply / return air volume Evaluating duct leakage Evaluating duct insulation Envelope infiltration Thermostat air sensing

SINGLE AREA IS HOT OR COLD

Interpreting supply / return air temperature Interpreting supply / return air volume Evaluating duct leakage Evaluating duct insulation Envelope infiltration Thermostat air sensing

INDOOR AIR QUALITY

Number of air changes per hour Odor control Contaminants

ANALYZING REPORTED SYMPTOMS IN HEATING

POOR HEATING

Interpreting supply / return air temperature Interpreting supply / return air volume Interpreting supply / return air velocity

Evaluating duct leakage

Using temperature drop across evaporator coil

HUMIDITY PROBLEMS

Interpreting wet bulb and dry bulb temperatures Interpreting supply / return air volume Determining the need for additional humidity Evaluating duct leakage

DRAFTY

Interpreting supply / return air temperature Interpreting supply / return air volume Interpreting supply / return air velocity

SYSTEMCOMPONENTS

INTRODUCTION TO BASIC SYSTEMS & COMPONENTS

HEAT TRANSFER

Fundamentals of heat transfer Psychrometrics

FURNACE CONFIGURATIONS & APPLICATIONS

GAS FURNACES WITH SPLIT SYSTEM AIR CONDITIONER

Introduction to gas furnace with split system AC

Electrical layouts Specifications Attic layouts Crawlspace layouts Closet layouts Basement layouts Ventilation options Regional considerations

MULTI-POSITION FURNACE

Four-way Threeway Two-way

PACKAGED GAS FURNACE SYSTEMS

Introduction to package gas furnace systems

Electrical layouts

Specifications

Single story applications Multi-

story applications

Applied with crawlspace duct designs

Ventilation options

Economizer options

Regional considerations

COMBUSTION PROCESS FOR GAS FURNACES

COMBUSTION - NATURAL GAS

Describe methane's role in combustion Describe carbon dioxide as a product of combustion Describe oxygen's role in combustion Describe carbon monoxide as a product of combustion Describe ethane's role in combustion

COMBUSTION - MANUFACTURED GAS

Describe liquefied petroleum's role in combustion Describe butane's role in combustion Describe propane's role in combustion

FUNDAMENTALS OF GAS COMBUSTION SYSTEMS

Category I - Negative pressure vent - non-condensing

Category II - Negative pressure vent - condensing

Category III - Positive pressure vent - non-condensing Category IV - Positive pressure vent - condensing

NATURAL DRAFT GAS FURNACE - COMPONENTS

HEATEXCHANGERS

Clamshell construction Materials

BURNERS

Describe ribbon burners COMBUSTION AIR REQUIREMENTS

DIRECT VENT (OUTDOOR AIR) SPECIFICATIONS

Attic applications Crawlspace applications Closet applications Basement applications Rooftop applications

NON-DIRECT VENT (INDOOR AIR) SPECIFICATIONS

Attic applications Crawlspace applications Closet applications Basement applications

AIR DISTRIBUTION

DUCT SYSTEMS

Duct system design Duct configurations Return configurations Return grille locations Supply locations

SUPPLY BLOWERS

Introduction to supply blowers Supply blowers - types and selection Blower operation Fan laws

WIRING LAYOUTS

POWER WIRING

Power wiring for package unit furnace Power wiring for split system furnace

LOW VOLTAGE

Overview of low voltage wiring

NATURAL DRAFT GAS FURNACE - OPERATION

GAS FURNACE - OPERATION

Overview of operation for standing pilot furnace Overview of operation for intermittent pilot furnace Overview of operation for direct ignition furnace

STANDING PILOT IGNITION

Basics of operation Flame switch type Thermocouple type

INTERMITTENT PILOT IGNITION

Spark ignited pilots Hot surface ignited pilots

DIRECT IGNITION

Spark ignited

Hot surface ignition (HSI)

VENT SYSTEMS

Fundamentals of gravity flow draft systems Horizontal vent systems

SEQUENCE OF OPERATION

Typical operation for standing pilot furnace

Typical operation for intermittent pilot furnace Typical operation for direct ignition furnace

CONTROL FUNCTIONS

Fan control

Heat exchanger limit control Roll-out switch Flame proving - flame switch and thermocouple Gas valve Door interlocks

INDUCED DRAFT NON-CONDENSING - COMPONENTS

HEATEXCHANGERS

Clamshell construction Materials Tubular

BURNERS

Describe ribbon burners Describe in-shot burners

INDUCED DRAFT BLOWERS

Introduction

Role in system operation

INDUCED DRAFT NON-CONDENSING - OPERATION

GAS FURNACE - OPERATION

Overview of operation for standing pilot furnace Overview of operation for intermittent pilot furnace Overview of operation for direct ignition furnace

STANDING PILOT IGNITION

Basics of operation Flame switch type Thermocouple type

INTERMITTENT PILOT IGNITION

Spark ignited pilots Hot surface ignited pilots

DIRECT IGNITION

Spark ignited Hot surface ignition (HSI)

VENT SYSTEMS

Vertical vent systems Horizontal vent systems

SEQUENCE OF OPERATION

Typical operation for standing pilot furnace Typical operation for intermittent pilot furnace Typical operation for direct ignition furnace

CONTROL FUNCTIONS

Fan control Heat exchanger limit control Roll-out switch Flame proving - flame sensor and thermocouple Pressure proving switch Gas valve Door interlocks Ignition control

INDUCED DRAFT CONDENSING - COMPONENTS

HEAT EXCHANGERS

Clamshell construction Materials Tubular Secondary heat exchanger

BURNERS

Describe in-shot burners

INDUCED DRAFT BLOWERS

Introduction

Role in system operation

INDUCED DRAFT CONDENSING - OPERATION

GAS FURNACE - OPERATION

Overview of operation for intermittent pilot furnace Overview of operation for direct ignition furnace

INTERMITTENT PILOT IGNITION

Spark ignited pilots Hot surface ignited pilots DIRECT IGNITION Spark ignited Hot surface ignition (HSI)

VENT SYSTEMS

Vertical vent systems Horizontal vent systems

SEQUENCE OF OPERATION

Typical operation for intermittent pilot furnace Typical operation for direct ignition furnace

CONTROL FUNCTIONS

Fan control

Heat exchanger limit control

Roll-out switch

Flame proving - flame sensor and thermocouple

Pressure proving switch

Gas valve

Door interlocks

Ignition control

Condensate proving switch NON-

SENSING CONTROLS RELAYS

AND CONTACTORS

Introduction to relays and contactors Basics of relay and contactor operation - inrush and holding Selecting relays and contactors Application considerations for relays and contactors

GAS VALVES - SINGLE STAGE

Basics of construction Basics of operation Slow opening valves Snap opening valves Step opening valves

GAS VALVES - TWO STAGE

Basics of construction Basics of operation

IGNITION CONTROL SYSTEMS

OVERVIEW OF IGNITION CONTROLS

Elements of gas furnace ignition systems

Introduction to ignition controls for natural draft / standing pilot furnaces / manually lit Introduction to ignition controls for induced draft / intermittent pilot spark ignition systems Introduction to ignition controls for induced draft / intermittent pilot hot surface ignition systems Introduction to ignition controls for induced draft / direct ignition / spark ignition systems Introduction to ignition controls for induced draft / direct ignition / spark ignition systems

STANDING PILOT

Components and functions Ignition sequence Safety

INTERMITTENT PILOT

Components and functions Ignition sequence Safety

DIRECT IGNITION

Components and functions

Ignition sequence

Safety

ELECTRONIC CONTROLS

OVERVIEW OF ELECTRONIC CONTROLLERS

Input / output operations Logic

ELECTRONIC THERMOSTATS

Fundamentals of electronic thermostats Selecting electronic thermostats Overview of electronic thermostat operation Fossil fuel kits

ELECTRONIC TIMERS

Introduction to blower delay timers

ELECTROMECHANICAL SENSING CONTROLS

ELECTROMECHANICAL WALL THERMOSTATS

Basic thermostat types and operation Selecting wall thermostats and sub-bases Thermostat terminals and wiring Using electromechanical thermostats Selecting location

ELECTROMECHANICAL TEMPERATURE CONTROLS

Introduction to bimetal controls Disc type temperature limit controls Fuses and fuse links Fossil fuel kits Motor overloads

PRESSURE CONTROLS

Operation of pressure controls Using pressure controls

Combustion air proving (pressure) switch

APPLIED KNOWLEDGE: REGS, CODES, & DESIGN

AIR QUALITY REGULATIONS

INDOOR AIR QUALITY

Fresh air supplies

ELECTRICAL CODE

REQUIREMENTS

Overview of electrical code Circuit breaker and fuse requirements General wiring practices Class I wire sizing Class II wire sizing Conduit sizing Definitions Safety listings - UL / ARL / ETL

STATE AND LOCAL REGULATIONS AND CODES

STATE AND LOCAL REGULATIONS

State requirements for technicians Use of Carbon Monoxide detectors Smoke detector requirements

CODES

Plumbing Municipalities Gas furnace for Lt. Commercial Gas furnace for Residential

FIRE PROTECTION REGULATIONS AND CODES

REQUIRED COMPONENTS

Return air sensors Fire dampers Components FIRE PREVENTION

Overview of fire prevention

VENTING REQUIREMENTS

Specifications for venting

Types of venting systems to be used

DESIGN CONSIDERATIONS - COMFORT

TEMPERATURE

Designing for capacity Using industry standards

HUMIDITY

Role of humidity in comfort Using industry standards

INDOOR AIR QUALITY

Ventilation - comfort Air cleaning for comfort Industry standards for air quality

SOUND LEVEL

Equipment location considerations Isolation, mounting pad, duct, and structure

DESIGN CONSIDERATIONS - GAS FURNACE EQUIPMENT

GAS FURNACES WITH SPLIT SYSTEM AIR CONDITIONER

System designs - closets, basements, etc.

Equipment location

Electrical layouts

Ventilation - fresh air

Regional design considerations

Combustion flue gases

Ventilation - equipment

Condensate drains / pans

Mounting of equipment

Combustion air

Fuel gas atmospheric burner - forced air system

PACKAGED SYSTEMS

System designs Equipment location Electrical layouts Ventilation - fresh air Mounting of equipment Combustion air

COMBUSTION GAS VENTING

Sizing flue pipe - ICC tables Flue pipe layout - ICC tables Adapting vent draft control - damper Roof fittings - cap, collar, flashing, etc. Pipe types - PVC and B-metal

DESIGN CONSIDERATIONS - EXTERNAL COMPONENTS

DIFFUSERS, REGISTERS, AND GRILLES

Selecting diffusers, grilles, and registers for capacity Selecting diffusers, grilles, and registers for reduced sound Selecting diffusers, grilles, and registers for throws, spread, and pressure drop Locations

ACCESSORIES

Humidifier sizing Retrofit automatic ignition kits Electronic air cleaners (EAC's)

MECHANICAL CODE

COMBUSTION AIR

Sizing air intakes in confined spaces Sources of combustion air FURNACE ACCESS Access to furnace

Access to service panel

GAS PIPING

Sizing for capacity Length limitations Attachment to appliance

INDUSTRY STANDARDS

EQUIPMENT STANDARDS

Introduction to industry standards ARI / IAS standards for ratings

SYSTEM STANDARDS

Introduction to industry standards Industry standards

BIDS AND PROPOSALS

SYSTEM SIZING

Survey of requirements Selecting equipment Sizing components Adding accessories Basic calculation of heating loads

ESTIMATING INSTALLATION

Installation price Understanding proposal forms Understanding bid forms - bid to specs and flat rate pricing Legal implications of a bid

EFFECT OF ELECTRICAL SUPPLY ON BID

Effects of electrical power on bid Electrical analysis - power

Area= 1t x radius² $A^{2} + B^{2} = C$ *Circumference*

Diameter = 1t

 $FR = \frac{ASP \times 100}{TEL} \quad (IWqIOO)$

Rectangular Duct Area (ft2) = $\frac{Length \times Width}{144}$

Round Duct Area $(ft2) = \frac{1t \times diameter}{576}$

 $mfd = \frac{(2650 \times I)}{E}$

1 IWC = 0.0360 PSI 1 PSI= 27.72 IWC

$$CFM = Velocity (fpm) \times Duct Area (ft^2)$$

$$CFM - \frac{(Watts \times 3.413)}{(ATx \, 1.08)}$$

$$Cr_{(Series)} = \frac{1}{\frac{1}{Cl} + \frac{1}{C2} + \frac{1}{C2}}$$

 C_T (Parallel) = $C_1 + C_2 + \dots + C_N$

TEMPERATURE PRESSURE CHART-atsealevel

Pressure (PSIG), Vacuum (in. Of Hg)-Bold Italic Figures

To determine subcooling for 404A, 407C, and 4220, use BUBBLE POINT values (temperatures above 50°F -gray background) To determine superheat for 404A, 407C, and 4220, use DEW POINT values (temperatures 50°F and below)

CONTINUED

TEMPERATURE PRESSURE CHART-atsealevel

Pressure (PSIG), Vacuum (in. Of Hg)-Bold Italic Figures

To determine subcooling for 404A, 407C, and 4220, use BUBBLE POINT values (temperatures above 50°F -gray background) To determine superheat for 404A, 407C, and 4220, use DEW POINT values (temperatures 50°F and below)

TI	EMP.	REFRIGERANT						
۰f	OC	22	134a	404A	407C	410A	4220	507
32	0.0	57.5	27.8	72.4	52.1	101.2	55.2	75.8
33 34	0.6	58.8 60.2	28.6 29.5	73.9 75.5	53.4 54.8	103.3	56.5 57.9	77.4 79.0
35	1.7	61.5	30.4	77.1	56.1	107.5	59.3	80.7
36	2.2	62.9	31.3	78.7	57.5	109.7	60.6	82.3
37	2.8	64.3	32.2	80.3	58.9	111.9	62.0	84.0
38	3.3	65.7	33.1	82.0	60.3	114.1	63.5	85.7
39	3.9	67.1	34.1	83.7	61.7	116.3	64.9	87.5
40	4.4	68.6 71.5	35.0	85.4	63.2	118.6	66.4	89.2
42 44	5.0 6.7	71.5	39.0	00.0 92.4	00.1 69.2	125.2	09.4 72.5	92.8 96.4
46	7.8	77.6	41.1	96.0	72.3	132.8	75.6	100.2
48	8.9	80.8	43.2	99.8	75.5	137.8	78.9	104.0
50	10.0	84.1	45.4	103.6	78.8	142.9	82.2	108.0
52	11.1	87.4	47.7	1092	101.7	148.1	96.1	112.0
54	12.2	90.8	50.0	1133	105.6	153.5	99.8	116.1
56	13.3	94.4	52.4 54.0	11/.4	109.6	159.0	103.6	120.4
50 60	14.4	90.0	57 A	121.7	113.7	104.7 1704	107.4	124.7
62	16.7	101.0	60.0	1305	122.3	176.3	1154	133.7
64	17.8	109.3	62.7	1350	126.7	182.4	1195	138.3
66	18.9	113.2	65.4	139.7	131.2	188.6	123.8	143.1
68	20.0	117.3	68.2	144.4	135.8	194.9	128.1	147.9
70	21.1	121.4	71.1	149.3	140.5	201.4	132.5	152.9
72	22.2	125.7	/4.1 77.1	154.5	145.4	208.0	137.1	158.0
74	23.3 24.4	130.0	80.2	1594	150.5	214.0	141./	168.5
78	25.6	139.0	83.4	169.9	160.5	228.9	151.3	174.0
80	26.7	143.6	86.7	175.4	185.8	236.1	156.3	179.5
82	27.8	148.4	90.0	181.0	171.2	243.6	161.3	185.2
84	28.9	153.2	93.5	186.7	176.8	251.2	1665	191.0
86	30.0	158.2	97.0	1925	182.4	258.9	171.8	197.0
88	31.1	163.2	100.0	198.4	188.2	200.8	1/7.2	203.0
90 92	33.3	173.7	104.5	204.5	200.1	214.9	182.7	209.2
94	34.4	179.1	112.0	217.0	206.3	203.2	194.1	222.0
96	35.6	184.6	115.9	2234	212.5	300.3	200.0	228.6
98	36.7	190.2	120.0	230.0	219.0	309.1	206.0	235.3
100	37.8	195.9	124.2	236.8	225.5	318.1	212.1	242.2
102	38.9	201.8	128.4	243.6	232.2	327.2	218.4	249.2
104	40.0	207.7	132.7	250.8	239.0	346.2	224.8	230.5
100	42.2	213.8	137.2	2651	253.0	355.9	231.5	203.7
110	43.3	226.4	146.4	272.5	260.3	365.9	244.7	278.7
112	44.4	232.8	151.1	280.1	287.6	376.1	251.6	286.5
114	45.6	239.4	156.0	287.9	275.1	386.4	258.8	294.4
116	46.7	246.1	160.9	295.8	282.8	397.0	265.8	302.4
118	4/.8	253.0	100.0	505.8 312.1	290.6 208.6	407.8 718 8	2732	510.7 310.1
120	40.9 51 7	200.0	1/1.2	3333	290.0	447 4	200.0	340.8
130	54.4	296.9	198.7	355.6	340.7	477.4	320.2	363.6