SENIOR CERTIFICATION

Certification Information

Scope - Tests a candidate's knowledge of the installation, service, maintenance, and repair of HVAC system operations to maintain high levels of energy efficiency. System sizes are limited to 10 tons or less of Air Conditioning and 325,000 BTU or less heating capacity.

Qualifications

- > This is a test and certification for **TECHNICIANS** in the HVAC industry. The test is designed for the highest level senior technician. This test for certification is not intended for the HVAC system designer, sales force, or the engineering community.
- > This test will measure what 80% of the HVAC Efficiency Analyst candidates have an 80% likelihood of encountering at least once during the year on a NATIONAL basis.
- As a pre-requisite to sit for the **HVAC Efficiency Analyst** exam, the candidate shall hold two (2) certifications by NATE in Service Sector Specialties as follows:
 - Air Conditioning (AC) plus one of the following: AD, GS, OL, HG, or HO
 - Air Distribution (AD) plus one of the following: AC, GS, HP, OL, HG, or HO
 - Gas Heating (GS) plus one of the following: AC, AD, or HP
 - Heat Pump (HP) plus one of the following: AD, GS, OL, HG, or HO
 - Oil Heating (OL) plus one of the following: AC, AD, HP, HG, or HO
 - Hydronics Gas (HG) plus one of the following: AC, AD, or HP
 - Hydronics Oil (HO) plus one of the following: AC, AD, or HP

Test Specifications

Open Book 4 Hour Time Limit 100 Questions Passing Score: PASS/FAIL Listed below are the percentages of questions that will be in each section of the HVAC Efficiency Analyst exam.

SECTION AREA DESCRIPTION	SECTION PERCENTAGE
Load Calculation	15%
Equipment Selection	10%
Air Distribution	20%
Hydronic Distribution	7%
System Performance	35%
Indoor Air/Environment Quality	7%
Planned Maintenance	6%

HVAC Efficiency Analyst Industry References

The reference materials listed below will be helpful in preparing for this exam. These materials may **NOT** contain all of the information necessary to be competent in this specialty or to pass the exam.

- Duct Calculators Sheet Metal, Ductboard, and Flexible Duct
- American National Standards Institute (ANSI) / Air Conditioning Contractors of America (ACCA) Manuals Latest Edition
 - "D", "J", "QI" Quality Installation, and "S"
- ACCA Manuals "T" and "RS" Latest Editions
- ACCA Residential Duct Diagnostics and Repair
- American National Standards Institute (ANSI) / Sheet Metal and Air Conditioning Contractors' National Association, Inc. (SMACNA) Manuals
 - HVAC Duct Construction Standards Metal and Flexible
- Sheet Metal and Air Conditioning Contractors' National Association, Inc. (SMACNA) Manuals
 - Fibrous Glass Duct Construction Standards, Residential Comfort System Installation Standards Manual, and HVAC Air Duct Leakage Test Manual
- International Energy Conservation Code Latest Edition with Addendum
- Air Diffusion Council Flexible Duct Performance & Installation Standards
- North American Insulation Manufacturers Association (NAIMA) Manuals
 - Fibrous Glass Duct Construction Standards and A Guide to Insulated Air Duct Systems
- International Mechanical Code Latest Edition with Addendum
- International Fuel Gas Code Latest Edition with Addendum
- National Fuel Gas Code Latest Edition with Addendum
- Specification of Energy-Efficient Installation and Maintenance Practices for Residential HVAC Systems developed by Consortium for Energy
 Efficiency (CEE) Latest Edition with Addendum
- ASHRAE Standard-62.2 Latest Edition with Addendum
- $\bullet \qquad \text{ANSI} \, / \, \text{ASHRAE Standard-152-2004} \, \, \text{Latest Edition with Addendum}$
- ENERGY STAR™ Home Sealing Standards Latest Edition with Addendum

Passing Score Development Process

The passing scores for the NATE tests were established using a systematic procedure (a Passing Score Study). This procedure employed the judgment of experienced HVAC professionals and educators representing various HVAC specialties and geographical areas. The passing scores were set using criteria defining competent performance. The passing score for different test forms may vary slightly due to the comparative difficulty of the test questions.

Exam Copyrights

All testing documents and questions are the copyrighted property of North American Technician Excellence Inc.-NATE. It is forbidden under federal copyright law to copy, reproduce, record, distribute or display these documents or questions by any means, in whole or part, without written permission from NATE. Doing so may subject you to severe civil and/or criminal penalties, including imprisonment and/or fines for criminal violations.

Suggested Retail Price: \$300

HVAC Efficiency

Senior

LOAD CALCULATION

CUSTOMER SURVEY

WEATHER DATA

Design temperature - summer

Design temperature - winter

Heating degree days

Cooling degree days

Equivalent full load hours

BUILDING ORIENTATION

Building orientation

BUILDING SETTING OPTIONS

On slab construction

Crawlspace

Partial basement (cellar)

Full basement

TAKE OFFS - BLUEPRINT OR ACTUAL SITE REVIEW

Construction of walls

Area of walls

Insulation of walls

Number of windows (fenestration)

Area of windows (fenestration)

Construction of windows (fenestration)

Orientation of windows (fenestration)

Shading of windows (fenestration)

NFRC window ratings (thermal effectiveness)

Construction of floors

Area of floors

Insulation of floors

Construction of ceilings

Area of ceilings

Insulation of ceilings

Construction of roof

Area of roof

Insulation of roof

Construction of skylight(s)

Area of skylight(s)

Thermal effectiveness of skylight(s)

COORDINATION W/ ARCHITECT/DESIGNER/BUILDER/OTHER

Developing a good system design plan

Ensuring good practices amongst the trades

ZONING

SINGLE ZONE

Ducted

Hydronic

MULTIPLE ZONES

Ducted

Hydronic

<u>INFILTRATION</u>

AIR CHANGES PER HOUR

Equal exchange requirements

Heat gain / loss per CFM

Latent loss/gain per CFM

Building assembly air leakage - normal / tight

OCCUPANCY STANDARDS

Code requirements per occupancy

```
EQUIPMENT REQUIREMENTS
```

Combustion air

Ventilation air

Dilution air

DIAGNOSTIC TOOLS

Envelope pressurization test (blower door)

Duct leakage test (duct blaster)

HOME SEALING

Standards

Requirements

EXFILTRATION - EXHAUST REQUIREMENTS

OCCUPANCY STANDARDS

Code requirements per occupancy

EQUIPMENT REQUIREMENTS

Boiler / furnace venting requirements

Combustion air zone requirements

VENTILATION

HEAT RECOVERY VENTILATOR (HRV)

Heat Recovery Ventilator (HRV)

ENERGY RECOVERY VENTILATOR (ERV)

Energy Recovery Ventilator (ERV)

INTERNAL LOADS

Human occupancy

Equipment loads

HEAT LOSS

TOTAL

Total

SENSIBLE

Sensible

LATENT

Latent

HEAT GAIN

TOTAL

Total

SENSIBLE

Sensible

LATENT

Latent

DUCT LOADS

GAIN

Total

Sensible

Latent

Infiltration

LOSS

Total

Sensible

Latent

Infiltration

DUCT DESIGN LOSS

Efficiency impact

Comfort impact

Improper duct design impact

Improper duct installation impact

Improper duct location impact

REGULATIONS

INDOOR AIR QUALITY

Fresh air supplies

```
CODES
CODES
```

Energy

Plumbing

Mechanical

Fire

Municipalities

DESIGN CONSIDERATIONS - COMFORT

TEMPERATURE

Designing for capacity

Using standard

HUMIDITY

Role of humidity in total comfort

Using standards

Humidity control related to cooling equipment size (over-sizing)

INDOOR AIR QUALITY

Ventilation - total comfort

Air cleaning for total comfort

Standards for air quality

Outside air

Filter ratings (MERV) related to system efficiency

Filter effect on system efficiency related to static pressure during load calculation

SOUND LEVEL

Equipment location considerations

Isolation, mounting pad, duct, and structure

Duct systems - flex joints

ZONING

Single zone

Multi-zone

DESIGN CONSIDERATIONS - RESIDENTIAL

SPLIT SYSTEMS

Ventilation - fresh air

Ventilation - equipment

AIR BALANCING

Duct sizing

Blower speed adjustments

Damper position adjustments

Estimated air-flow rate for proper capacity

HYDRONIC BALANCING

Pipe sizing

Pump speed adjustments

Flow control position adjustments

Estimated flow rate for capacity

DESIGN CONSIDERATIONS - COMPONENTS

IMPACT OF DIFFUSERS, GRILLES, & REGISTERS

Energy use

Comfort

Temperature stratification

IMPACT OF TEMPERATURE STRATIFICATION

Energy use

Comfort

IMPACT OF DIFF., GRILLES, & REGISTERS ON VSM'S

SELECTING DIFFUSERS FOR ENERGY EFFICIENCY

Selecting diffusers for capacity

Selecting diffusers for reduced sound

Selecting diffusers for spread, throw, and pressure drop

Locations

SELECTING GRILLES FOR ENERGY EFFICIENCY

Selecting grilles for capacity

Selecting grilles for reduced sound

Selecting location

SELECTING REGISTERS FOR ENERGY EFFICIENCY

Selecting registers for capacity

Selecting registers for reduced sound

Selecting registers for spread, throw, and pressure drop

Locations

Impact of registers on temperature stratification and energy use

DUCTS & FITTINGS - IMPACT ON ENERGY USE

Specifying physical dimensions

Sketching duct layout

Duct fitting equivalency - Equivalent Length to duct size

SPECIAL DUCTS & FITTINGS

Working drawings vs. Isometric drawings

Markings and abbreviations for duct fitting and manufacturing

Measurement for replacement of special duct or fitting

STATIC PRESSURE LOSSES

Energy impacts of fan motors with variable speed

Energy impacts on PSC fan motors

Filter grilles

Electronic Air Cleaner (EAC)

Electrostatic

Media type filters

Use of alerts/reminders to change filters

SELECTING HYDRONIC COMPONENTS

Selecting radiant output devices

Selecting different in-floor configurations

Selecting boiler temperature control devices

Selecting valves based on pressure drop / capacity

Selecting coils by capacity

Selecting pumps

Selecting pipe insulation

Selecting other distribution devices (hydronic specialties)

BLUEPRINT READING

Determination of dimension from scale blueprint / plans

Reading blueprints/ plans

Visualizing duct layout from blueprints/ plans

MECHANICAL CODE

EQUIPMENT ACCESS

Minimum clearance

Electrical disconnects

Fire dampers

REFRIGERANT LINE ROUTING

Support requirements

Inspection requirements

CONDENSATE DRAINS

Materials

Sizing

Location and routing

Clean outs and cut-offs

INDUSTRY STANDARDS

EQUIPMENT STANDARDS

Introduction to industry standards

ARI standards for ratings

SYSTEM STANDARDS

Introduction to industry standards

ASHRAE standards

SMACNA standards

ACCA standards

CEE specification

DESIGN CONSIDERATIONS - LIGHT COMMERCIAL

SPLIT SYSTEMS

System designs - closets, basements, etc.

Air distribution systems

Ventilation - fresh air

Ventilation - equipment

PACKAGED SYSTEMS

System designs

Economizers

Ventilation - equipment

AIR BALANCING

Duct sizing

Blower speed adjustments

Damper position adjustments

Measurement of air flow rate

Fan laws

DESIGN CONSIDERATIONS - INCORRECT LOAD

CONSEQUENCES OF UNDER-SIZING

CONSEQUENCES OF OVER-SIZING

BIDS AND PROPOSALS

SYSTEM SIZING

Survey of requirements

Selecting equipment

Selecting accessories

PREPARATION FOR PROPOSAL

Understanding forms for proposals and bids

Understanding legal implications of a bid

EQUIPMENT SELECTION

CAPACITY

DESIGN HEATING LOAD

Total load

Sensible load

Latent load

CFM / FPM Requirements

GPM / PSI Requirements

Ventilation requirements

Matching of condenser and evaporator coil capacity - heat pumps

Impacts of heat recovery or energy recovery ventilators

Impacts of over-sizing and/or under-sizing

DESIGN COOLING LOAD

Total load

Sensible load

Latent load

CFM / FPM Requirements

GPM / PSI Requirements

Ventilation requirements

Impact of airflow on humidity removal

Matching of condenser and evaporator coil capacity

Use of thermostats to control humidity through airflow control

Impacts of heat recovery or energy recovery ventilators

Impacts of over-sizing and/or under-sizing

DESIGN VENTILATION LOAD

Total load

Sensible load

Latent load

CFM / FPM Requirements

Ventilation requirements - natural / mechanical

Impact of airflow on humidity removal

Use of controls for humidity through airflow control

Impacts of heat recovery or energy recovery ventilators

Impacts of over-sizing and/or under-sizing

Impacts of night ventilation

Impacts of attic ventilation

Impacts of evaporative coolers

EFFICIENCY

SYSTEM EFFICIENCY

Steady state efficiency

Define ducts inside conditioned space

Ducts outside conditioned space

Ducted system gains / losses

Hydronic system gains / losses

HEATING EFFICIENCY

Gas furnace / boiler - Annual Fuel Utilization Efficiency (AFUE)

Efficiency gains with condensing furnaces vs. 80%

Comfort / efficiency gains with variable speed blower systems

Comfort / efficiency gains with two stage heating

Discussion of reduced comfort / efficiency of over-sizing heating systems

Impact of furnace fan

Oil furnace / boiler - combustion efficiency

Electric furnace / boiler efficiency

COOLING EFFICIENCY

Seasonal Energy Efficiency Ratio (SEER)

Importance of coil selection on efficiency and capacity (sensible/latent)

Energy Efficiency Ratio (EER)

Impact of furnace fan

CAPACITY CONTROLS

AIR DISTRIBUTION SYSTEM

Constant fan speed selection - 1, 2, 3, 4

Variable fan speed selection

Thermostat control

CFM selection for humidity removal

Constant CFM per ton

Zoning control system

WATER DISTRIBUTION SYSTEM

Constant pump speed selection

Variable pump speed selection

Zoning control system - valves or pumps

BOILER / FURNACE COMPONENTS

Constant firing rates

Variable firing rates

Electrical sequencing

Flow controls

COOLING COMPONENTS

Single compressor

Dual speed compressors

Unloading compressors

Multiple compressors

Variable speed compressors

Metering devices

LOW AMBIENT CONTROLS

HEATING

Outdoor reset control

Electric heating element sequencing

Electric heating element lockout

COOLING

Variable condenser fan operation

On / off condenser fan

Two-stage air conditioner with variable speed fan

Bypass

AIR DISTRIBUTION

SYSTEMS AND COMPONENTS

HEAT TRANSFER AND THE HEATING / COOLING CYCLE

Heat transfer and cooling

Refrigeration circuit - components

Dynamic analysis of temperatures and pressure in the refrigerant circuit.

Psychrometrics

Subcooling

Superheat

DUCT SYSTEMS

IMPACT ON ENERGY USE OF BASIC DUCT SYSTEMS

Overview of duct systems for split and package systems

Duct configuration - extended plenum

Duct configuration - reducing extended plenum

Duct configuration - perimeter radial

Duct configuration - perimeter loop

Duct configuration - overhead radial

Duct configuration - branching flexible

Duct configuration - concentric

IMPACT ON ENERGY USE OF DUCT LOCATION

Attic

Basement

CrawIspace

Slab

Roof

Furred down

Exposed

Chases

Inside the envelope - avoid non-insulated areas

BASIC ZONE SYSTEMS

Equipment zoned

Air side zoned

IMPACT ON ENERGY USE OF DUCT MATERIALS

Define / recognize ductboard

Define / recognize metal duct

Define / recognize flexible duct

Define / recognize PVC pipe

Insulating material

FITTING NOMENCLATURE

Define / recognize plenum

Define / recognize transition

Define / recognize elbow - 90 degrees and 45 degrees

Define / recognize round duct

Define / recognize rectangular duct

Define / recognize turning vanes

Return configurations - ducted, central, etc.

Define / recognize wye - rectangular and round

Define / recognize damper - rectangular and round

Sheet metal duct joints - "s" and drive, snaplock, button lock, etc.

IMPACT ON ENERGY USE OF DAMPERS

Balancing

Splitters

Economizers

Fresh air

Fire

GRILLES

Types and uses

Selecting grilles by volume and velocity

Selecting grilles by purpose (floor, wall, and ceiling)

Proper installation techniques (follow installation instructions)

IMPACT ON ENERGY USE OF REGISTERS

Types and uses

Selecting registers

Selecting registers by use of fan specifications

Selecting registers by air spread and throw capacity

Proper installation techniques (follow installation instructions)

DIFFUSERS

Types and uses

Selecting diffusers

Selecting diffusers by use of fan specifications

Selecting diffusers by air spread and throw capacity

Proper installation techniques (follow installation instructions)

IMPACT ON ENERGY USE OF FILTRATION SYSTEMS

Filter access closures system

Media type filters

Electronic Air Cleaner (EAC)

Electrostatic filters - non-electric

Static pressure increases energy by ECM fan motors

VENTILATION SYSTEMS

Depressurization criteria

Draft of conditioned air into non-conditioned areas

Pressurization criteria

Forcing conditioned air into non-conditioned areas

Attic exhaust

Residential exhaust(s)

Lt. Commercial exhaust(s)

Heat / energy recovery ventilators

Infiltration

Passive venting

Soffits vents

Ridge vents

Gable vents

Power venting

HUMIDIFIERS

Fundamentals of operation

Types

Duct material requirements

Installation support

Installation location(s)

DUCT FABRICATION

DUCT FABRICATION EQUIPMENT

Ductboard tools - 90 V-groove, end cutoff, female shiplap, hole cutter, stapler, etc.

Flex tools - tensioning strap tools, knives, etc.

Metal tools - metal snips, sheers, benders, breaks, hand formers, calipers, rulers, stapler, etc. -

FABRICATION TECHNIQUES FOR METAL DUCT

Seam types - pittsburgh and snap lock

Joint types - gasketed connectors (J or G), drive cleats, reinforced drive cleats, "s" slip, and standing "s"

Use of strength breaks in rectangular duct

FABRICATION TECHNIQUES FOR DUCTBOARD

Layout of duct fitting

Groove cutting - hand / machine

Proper use of joint tape

Approved type of joint tape

Foil faced

Mastic type

UL181

DUCT INSTALLATION

FIELD CONSTRUCTION / INSTALLATION

Ductboard installation technique

Techniques for joining dissimilar duct

Duct of alternate materials - wood, aluminum, etc.

INSTALLING METAL DUCT

Assembly methods for rectangular duct

Installation technique - rectangular metal

Assembly methods for round duct

Installation technique - round metal

Hanging ductwork

Sealing metal duct

Insulation - internal and external

INSTALLING FLEXIBLE DUCT

Assembly methods

Appropriate length

Follow installation instructions

Flexible duct joints

Hanging flexible duct

Allowed deflection

Unacceptable deflection

Installation technique - flex duct

Sealing flexible duct

INSTALLING DUCTBOARD

Assembly methods for ductboard - supports

Installation technique -ductboard

Hanging methods for ductboard

Sealing ductboard

DUCT SEALING MATERIALS

Duct mastic

Approved tapes

INSTALL. GRILLE, REGISTER, DIFFUSER, & DAMPER

Mounting to ductwork

Securing methods

CHASES USED AS DUCTS

Floor joists as air ducts

Vertical chases

Floor joists as air ducts - impact on energy use

Vertical chases - impact on energy use

RECONNECTING DUCT WHEN REPLACING EQUIPMENT

Reconnecting metal duct

Reconnecting flexible duct

Reconnecting ductboard duct

INSTALLATION OF PLENUMS AND DUCT

Sizing plenums for physical fit

Types and styles of plenums selected for oil furnace

Insulation of plenums and ducts

AIRFLOW PRINCIPLES

AIRFLOW

Velocity

Static pressure

Airflow volume - CFM / SCFM (Standard Air CFM)

BLOWERS AND FANS

Define sequence of operation

Air side requirements

AIRFLOW MEASUREMENTS

TOOLS

Using temperatures to determine airflow

Using manufacturer's airflow charts and/or tables

Measuring total supply and return airflow

AIRFLOW VELOCITY MEASUREMENTS

Pitot tube and manometer in measuring static pressure

Discharge velocity equipment

Static pressure drop across evaporator coil

Fan laws using known static pressure drop at specific flow(s)

Velometer - electronic and mechanical

Anemometer

Velocity measurement procedures

Gauge calibration

Airflow

Velocity

AIRFLOW PRESSURE MEASUREMENTS

Overview of static pressure measurements

Inclined manometer

Diaphragm type differential pressure gauge

U-tube manometer

Electronic manometer / pressure measurement

Gauge / meter calibration

Absolute vs. Gauge Pressure

Static pressure

Air pressure measurement terminology

Velocity pressure

Total pressure

AIR VOLUME MEASUREMENTS

Airflow hood

Formulae for determining CFM of air

Formulae for weight of air

Locations for air volume measurements

Airflow volume - CFM / SCFM (Standard Air CFM)

Powered flow hood test

Flow plate

DUCT LEAKAGE MEASUREMENTS (ALLOWANCE)

Duct leakage allowance to outdoors

Duct leakage allowance from outdoors

Duct leakage allowance to ambient

Duct leakage allowance from ambient

Total duct leakage allowance

AIR BALANCING

GATHERING DESIGN INFORMATION

Interpreting plans

Interpreting specifications

Interpreting equipment information

Interpreting control data

Interpreting as-built plans

PREPARATION OF SYSTEM FOR AIR TESTS

Locating registers, grilles, equipment, controls, and dampers in building walk-through

Setting dampers for tests

Setting thermostat for tests

Checking for proper fan operation and rotation

Checking for proper static pressure and temperature

PROCEDURES FOR CONDUCTING AIR TESTS

Measurements of each supply outlet - total readings

Measurements of each return inlet - total readings

MAKING ADJUSTMENTS

Adjust airflow to achieve required total airflow

Re-measure total supply and return grille airflow

Adjust dampers to obtain design airflow

Re-measure total airflow to verify that it is within specification

FINAL TEST

Comparing manufacturer's equipment information with test results

Record sheave, pulley, and belt sizes data

Test and record full load motor amperes

Test and record voltage

Test and record motor and fan RPM

Test and record supply and return static pressures

Test and record supply and return air temperatures - wet bulb and dry bulb

COMPLETION OF APPROPRIATE FORMS

HVAC system report

System diagrams

Duct traverse or data pulley forms

Instrument list - including calibration dates

HVAC SYSTEM ANALYSIS

NOISE PROBLEMS

Interpreting supply / return air volume

Interpreting supply / return air velocity

Noise problems

Blower cavitation

Oil canning

Motor / belt noise

Vibration

HIGH UTILITY BILLS

Understanding of utility bills - interpreting energy usage

Assess customer practices or characteristics impacting energy use

WIDE TEMPERATURE SWINGS

Interpreting supply / return air temperature

Interpreting supply / return air volume

Evaluating duct leakage

Evaluating duct insulation

Envelope evaluation

Thermostat air sensing

Assess thermal reasons for temperature stratification

Understanding system interactions

Locational impact of supply registers and return

Evaluating throw and/or velocity

SINGLE/MULTIPLE AREA IS HOT OR COLD

Interpreting supply / return air temperature

Interpreting supply / return air volume

Evaluating duct leakage

Evaluating duct insulation

Envelope evaluation

Thermostat air sensing

Understanding system interactions

Locational impact of supply registers and return

Evaluating throw and/or velocity

INDOOR AIR QUALITY

Number of air changes per hour

Source control

Assess fan operation (ex. continuous)

Type of filter

Filter maintenance practices

Humidity or mold issues

ANALYZING REPORTED SYMPTOMS IN COOLING

POOR COOLING

Interpreting supply / return air temperature

Interpreting supply / return air volume

Interpreting supply / return air velocity

Determining and interpreting the sensible heat ratio

Evaluating duct leakage

Evaluating envelope infiltration

Using wet bulb temperature drop across evaporator coil

HUMIDITY PROBLEMS

Interpreting wet bulb and dry bulb temperatures

Interpreting supply / return air volume

Determining and interpreting the sensible heat ratio

Evaluating duct leakage

Evaluating envelope infiltration

DRAFTY

Assess return and supply issues

Interpreting supply / return air temperature

Interpreting supply / return air volume

Interpreting supply / return air velocity

Evaluating envelope infiltration

ANALYZING REPORTED SYMPTOMS IN HEATING

POOR HEATING

Interpreting supply / return air temperature

Interpreting supply / return air volume

Interpreting supply / return air velocity

Evaluating duct leakage

Using temperature rise across the heat exchanger

HUMIDITY PROBLEMS

Interpreting wet bulb and dry bulb temperatures

Interpreting supply / return air volume

Determining the need for additional humidity

Evaluating duct leakage

DRAFTY

Interpreting supply / return air temperature

Interpreting supply / return air volume

Interpreting supply / return air velocity

DEALING WITH CONFLICTS

CODES

Codes vs. standards

STANDARDS

Standards vs. codes

BUILDING SCIENCE

Building science vs. codes or standards

HYDRONICS DISTRIBUTION

HEATING COMPONENTS

PROPER SELECTION

Baseboard units (finned, cast, radiant, etc.)

Kickspace heaters

Types of unit heaters

Radiant ceiling heating or cooling panels

Duct mounted heating coils

Hot water coil air handlers

Circulation pumps

Sizing of zoning distribution

Placement and location of types of heating units

Placement of air vents (manual or auto)

Radiant floor heating – how to maximize comfort with proper insulation with installation

PROPER SIZING

Baseboard units (finned, cast, radiant, etc.)

Kickspace heaters

Types of unit heaters

Radiant ceiling heating or cooling panels

Duct mounted heating coils

Hot water coil air handlers

Circulation pumps

Sizing of zoning distribution

Placement and location of types of heating units

Placement of air vents (manual or auto)

Radiant floor heating - how to maximize comfort with proper insulation with installation

PROPER INSTALLATION

Baseboard units (finned, cast, radiant, etc.)

Kickspace heaters

Types of unit heaters

Radiant ceiling heating or cooling panels

Duct mounted heating coils

Hot water coil air handlers

Circulation pumps

Sizing of zoning distribution

Placement and location of types of heating units

Placement of air vents (manual or auto)

Radiant floor heating - how to maximize comfort with proper insulation with installation

AUXILLARY COMPONENTS

Location and selection of circulators

Location and sizing of expansion tanks

Location of air separators

Location of pressure reducing valve

Location of backflow preventer

Location and sizing of relief valves

Location of zone valves

Location of flow check devices

Location of water treatment access

Installation of indirect water heaters

Installation of low water cutoffs

PIPING SYSTEMS

Installation of series-loop system (benefits and limitations)

Installation of one-pipe system (benefits and limitations)

Installation of two-pipe system (reverse return) (benefits and limitations)

Installation of primary / secondary piping system (benefits and limitations)

Installation of multiple zone systems (benefits and limitations)

Installation of system bypass and boiler bypass piping

Installation of boiler piping (near, manifold piping, hartford loop)

WATER MEASUREMENTS

Pressure requirements

GPM requirement

Temperature drop

INSTALLING THERMOSTATS

Locating and mounting

Wiring electromechanical thermostats

Wiring electronic thermostats

Programming of electronic thermostats

Installation of outdoor reset controls

SYSTEM PERFORMANCE

GAS HEATING

COMPONENTS

Define heat exchanger

Define limit controls

Define vent system

Define burners

Define fan controls

Define gas valve

Combustion air proving (pressure) switch

Hydronic controls

OPERATION

Define combustion air system

Air side requirements

Wet side requirements

Define sequence of operation

OIL HEATING

COMPONENTS

Define heat exchanger

Define limit controls

Define vent system

Define oil burners

Retention head burners energy efficiency gains

Hydronic controls

OPERATION

Define combustion air system

Air side requirements

Wet side requirements

Define sequence of operation

AIR CONDITIONING / HEAT PUMPS

COMPONENTS

Define evaporator

Define condenser

Define compressor

Define metering device

Reversing valves

Defrost controls

OPERATION

Define sequence of operation

Airside requirements

Metering device performance

ELECTRONIC CONTROLS

ELECTRONIC CONTROLLERS

Input / output operations

Logic

Electronic interface

Tap boards

ELECTRONIC THERMOSTATS

Selecting electronic thermostats

Electronic thermostat operation

ZONE CONTROLS

Selecting zone controls

Typical zone control logic

Bypass dampers

Types of zone controls

ELECTRONIC COMPRESSOR CONTROLS

Compressor staging controls

Compressor time delays

ELECTRONIC TIMERS

Blower delay timers

ECONOMIZER CONTROLLERS

Dry bulb controllers

Enthalpy controllers

Potentiometers

Sensors

ELECTROMECHANICAL SENSING CONTROLS

ELECTROMECHANICAL WALL THERMOSTATS

Thermostat types and operation

Thermostat terminals and wiring

Selecting wall thermostats and sub-bases

Using electromechanical thermostats

ELECTROMECHANICAL TEMPERATURE CONTROLS

Bimetal controls

Disc type temperature limit controls

Electric heat high limits

Fuses and fuse links

Motor overloads

Fossil fuel kits

PRESSURE CONTROLS

Disc type pressure controls and hi/low controls

Selection of disc type pressure controls

Using disc type pressure controls

Low ambient cooling controls

ELECTROMECHANICAL OUTDOOR THERMOSTATS

Outdoor thermostats

Outdoor thermostat wiring

TROUBLESHOOTING SEQUENCE OF OPERATION

Check for proper sequence of operation

Interpreting system at sequence interruption

ANALYZING REPORTED SYMPTOMS

Insufficient / no heat

Short cycle

Humidity problems

Drafty

Noise problems

System runs continuously

High utility bills

Wide swings in room temperatures

Air quality

Noisy conditions due to air in piping

SYSTEM AIR SIDE DIAGNOSTICS

Temperature checks

Check system static pressure

Check system velocity

ELECTRICAL CIRCUIT CHECKS

Supply voltage

Indoor blowers

Wall thermostat

Transformers

Electronic controllers - input / output

Flame rectification

Pilot ignition

Thermocouple / power pile generator

Fuel valve

ELECTRICAL COMPONENT CHECKS

Thermostat

Transformers

Fuses and breakers

Relays and contactors

Capacitors

Pressure controls

Limit controls

Centrifugal switch

Door interlock switch

Circulators

Zone valves

Boiler water controls (aquastats)

REPAIRS

Electrical wiring

Electrical components

Fuel supply

Flue stack / venting system

Condensate / drain system

REPLACEMENTS

Transformers

Relays and contactors

Indoor blowers

Capacitors

Heat exchanger

Fuel valve

Safety circuit switches

Draft motor

Pilot / igniters assemblies

Flame sensing rod

Circulators

Zone valves

Boiler water controls

VENT SYSTEM CHECKS

Natural / gravity draft

Forced draft

Induced draft

DIAGNOSING COMBUSTION PROBLEMS

Flame "roll-out"

Flame "lift-off"

Discolored flame

Intermittent flame

Partial burner flame

Delayed ignition

Carbon build up

Flashback

Trip on high limit

Carbon Monoxide

Carbon Dioxide checks for efficiency

Interpreting a smoke test

Balancing excess air and the smoke test

Diagnosing air leaks and efficiency loss

Diagnosing low draft-stack, overfire

Diagnosing excessive draft-stack, overfire

Diagnosing excessive draft on off cycle

Interpreting steady state efficiency measurements - stack loss calculations

Interpreting oxygen content for combustion diagnostics

Duct leakage induced combustion venting problems

Heating plants and water heaters

Problems with / caused by attic fans

LOW VOLTAGE CIRCUITS

Voltage tests

Control string analysis

Low voltage troubleshooting

Troubleshooting equipment with electronic devices

Troubleshooting with schematics

Troubleshooting without schematics

Current tests

Equipment continuity tests

Ground tests

LINE VOLTAGE CIRCUITS

Voltage tests

Current tests

Component tests

Circuit tracing line voltages

Troubleshooting with schematics

Troubleshooting without schematics

Equipment continuity tests

Ground tests

FUEL PRESSURE MEASUREMENTS

Manometer

Dial gauge

LEAK DETECTION - FUEL LINES

Leak detection solution

Electronic leak detectors

FLUE GAS ANALYSIS

O2 measurements

Carbon Dioxide measurements

LEAK DETECTION - FLUE PASSAGES

Carbon Monoxide detector - electrical

Carbon Monoxide detector - manual

NOISE PROBLEMS

Interpreting supply / return air volume

Interpreting supply / return air velocity

Noise problems - air and water

Blower and pump cavitation

Oil canning

Motor / belt noise

Vibration

HIGH UTILITY BILLS

Baseline utility expenses in relation to heating / cooling expenses

Interpreting supply / return air and water temperature

Interpreting supply / return air and water volume

Interpreting supply / return air and water pressures

Evaluating duct leakage

Evaluating duct insulation

Envelope insulation

Envelope infiltration

Thermostat air sensing

WIDE TEMPERATURE SWINGS

Interpreting supply / return air and water temperature

Interpreting supply / return air and water volume

Interpreting supply / return air and water pressures

Evaluating duct leakage

Evaluating duct insulation

Envelope insulation

Envelope infiltration

Thermostat air sensing

AREA(S) BEING HOT / COLD

Interpreting supply / return air and water temperature (TD)

Interpreting supply / return air and water volume

Interpreting supply / return air and water pressures

Evaluating duct leakage

Evaluating duct insulation

Envelope infiltration

Envelope insulation

Thermostat air sensing

Zone controls - dampers and valves

Circulator(s)

Blower(s)

Circulator controls

Outdoor reset control

Evaporator coil temperature drop

INDOOR AIR QUALITY

Number of air changes per hour

Source control

Economizer operations

HUMIDITY PROBLEMS

Interpreting wet bulb and dry bulb temperatures

Interpreting supply / return air volume

Determining the need for additional humidity

Evaluating duct leakage

Evaluating envelope infiltration

DRAFTS

Interpreting supply / return air temperature

Interpreting supply / return air volume

Interpreting supply / return air velocity

Evaluating envelope infiltration

REFRIGERANT SYSTEM DIAGNOSTICS

Using superheat

Using subcooling

Refrigerant charge specification

Refrigerant charge adjustment

Energy impacts of undercharging

Energy impacts of overcharging

Energy impacts of metering devices - TXV / fixed

Analyzing overall refrigerant circuit performance

Analyzing effects of refrigerant circuits on reversing valve operation

Locating problems based on refrigerant circuit temperatures

INDOOR AIR / ENVIRONMENT QUALITY

DESIGNING FOR ACCEPTABLE IAQ / IEQ

UNDERSTANDING VENTILATION AND ACCEPTABLE IAQ

Requirement for mechanical and natural ventilation

INSTALLING IAQ / IEQ SYSTEMS

PREVENTING RE-ENTRAINMENT & CROSS-CONTAMINATION

OPERATING & MAINTAINING IAQ / IEQ SYSTEMS

FILTRATION SYSTEMS

RECOVERY VENTILATORS

ULTRAVIOLET C (UVC)

EXHAUST/VENTILATION FANS

TROUBLESHOOTING IAQ / IEQ SYSTEMS

REVIEW PLANS

CONDUCT INTERVIEWS

DIAGNOSTICS

DOCUMENT RESULTS

IAQ / IEQ CONTROL STRATEGIES

POLLUTANT PATHWAYS

Doors

Windows

Elevator shafts

Chimneys

Garages

Plumbing stacks

Stairs

Ducts

Chases

Basements

SOURCE CONTROL - REMOVE / CONTAIN

Volatile Organic Compounds (VOC) - Formaldehyde, Ozone, Tobacco Smoke

Inorganic Compounds - NOx, Radon, CO, CO2

Moisture

Biological

FILTRATION

Particulate

Gases

DILUTION AIR

LOCAL EXHAUST

Bathrooms

Kitchens

Copiers

WHOLE HOUSE VENTILATION

PLANNED MAINTENANCE

PLANNED MAINTENANCE

ELECTRICAL

Connection checks

Control checks

General wiring

Induced draft motor

Forced draft motors

Supply air motor

Operation sequence

AIR DISTRIBUTION

Fan blades / blower scroll

Diffusers, grilles, and registers

Lubrication of blowers

Coil cleaning

Filter cleaning / replacement

Duct leakage check

Velocity

Volume

HYDRONIC

Pumps

Lubrication

Valves

Vents

Relief

Flow rates

Pressure

Expansion tank

Water treatment

Pump strainers

FIRE SIDE

Oil burner assembly service

Sectional cleaning

Gas burner assembly service

Performance checks - heat exchanger temperature rise

Flue / vent stack inspections

Combustion air supply check and adjustment

Fuel supply connections

Sequence of operation checks

Air intake / exhaust

Flame

Ignition

CO test

Draft test

CAZ Test REFRIGERATION SYSTEM

Using superheat Using subcooling

Refrigerant charge specification

Refrigerant charge adjustment

Energy impacts of undercharging

Energy impacts of overcharging

Energy impacts of metering devices - TXV / fixed

Analyzing overall refrigerant circuit performance

Analyzing effects of refrigerant circuits on reversing valve operation

Locating problems based on refrigerant circuit temperatures

$$\frac{\text{CFM}_n}{\text{CFM}_o} = \frac{\text{RPM}_n}{\text{RPM}_o}$$

o = old, n = newCFM and RPM are

interchangeable.

$$CFM_n = CFM_o \times \frac{RPM}{RPM}$$

 $CFM_n = CFM_o \times \frac{RPM_n}{RPM_o}$ $RPM_n = RPM_o \times \frac{CFM_n}{CFM_o}$

$$\left(\frac{\text{CFM}_n}{\text{CFM}_o}\right)^2 = \frac{\text{Sp}_n}{\text{Sp}_o}$$

$$\left(\frac{\text{CFM}_n}{\text{CFM}_o}\right)^2 = \frac{\text{Sp}_n}{\text{Sp}_o}$$
 or $\frac{\text{CFM}_n}{\text{CFM}_o} = \sqrt{\frac{\text{Sp}_n}{\text{Sp}_o}}$

$$CFM_n = CFM_o X \sqrt{\frac{Sp_n}{Sp_o}}$$

$$CFM_n = CFM_o \times \sqrt{\frac{Sp_n}{Sp_o}}$$
 $Sp_n = Sp_o \times (\frac{CFM_n}{CFM_o})^2$

$$\left(\frac{\text{CFM}_n}{\text{CFM}_o}\right)^3 = \frac{\text{BHP}_n}{\text{BHP}_o} \text{ OR } \frac{\text{CFM}_n}{\text{CFM}_o} = \sqrt[3]{\frac{\text{BHP}_n}{\text{BHP}_o}}$$

$$\left(\frac{\text{CFM}_n}{\text{CFM}_o}\right)^3 = \frac{\text{BHP}_n}{\text{BHP}_o} \text{ OR } \frac{\text{CFM}_n}{\text{CFM}_o} = \sqrt[3]{\frac{\text{BHP}_n}{\text{BHP}_o}} \quad \text{CFM}_n = \text{CFM}_o \times \sqrt[3]{\frac{\text{BHP}_n}{\text{BHP}_o}} \quad \text{BHP}_n = \text{BHP}_o \times \left(\frac{\text{CFM}_n}{\text{CFM}_o}\right)^3$$

Hydronics: $\Delta P = \text{Sp}$, CFM = GPM, RPM = GPM

 $MAT = (OAT \times \%OA) + (RAT \times \%RA)$

O = Outside

T = Temperature

R = Return

M = Mixed

A = Air

Btuh hydronic (H_2O only) = $500 \times GPM \times \Delta T$

Btuh sensible (at sea level) = $1.08 \times CFM \times \Delta T$

Btuh latent (at sea level) = $0.68 \times CFM \times \Delta Grains$

Btuh total (at sea level) = $4.5 \times CFM \times \Delta Enthalpy$

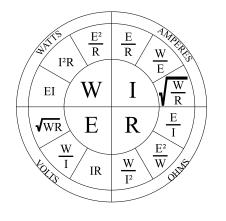
$$CFM = \frac{AC/Hr \times Volume}{60 \ min}$$

$$V = 4005 \times \sqrt{Vp}$$

$$Vp = \left(\frac{V}{4005}\right)^2$$

 $Pressure (PSI) = 0.433 \times Head (feet of water)$

1 IWC = 0.0360 PSI1 PSI = 27.72 IWC


Pressure $1 \times Volume 1 = Pressure 2 \times Volume 2$

Area = $\pi \times radius^2$

$$A^2 + B^2 = C^2$$

$$Diameter = \frac{Circumference}{\pi}$$

$$FR = \frac{ASP \times 100}{TEL}$$
 (IWC/100)

Rectangular Duct Area (ft^2) = $\frac{Length \times Width}{141}$

Round Duct Area (
$$ft^2$$
) = $\frac{\pi \times diameter^2}{576}$

$$mfd = \frac{(2650 \times I)}{E}$$

 $CFM = Velocity (fpm) \times Duct Area (ft^2)$

$$CFM = \frac{(Watts \times 3.413)}{(\Delta T \times 1.08)}$$

$$C_T ext{ (Series)} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_N}}$$

$$C_T$$
 (Parallel) = $C_1 + C_2 + ... + C_N$

TEMPERATURE PRESSURE CHART - at sea level

Pressure (PSIG), Vacuum (in. Of Hg) – Bold Italic Figures
To determine subcooling for 404A, 407C, and 422D, use BUBBLE POINT values (temperatures above 50°F – gray background)
To determine superheat for 404A, 407C, and 422D, use DEW POINT values (temperatures 50°F and below)

CONTINUED

TEMPERATURE PRESSURE CHART - at sea level

Pressure (PSIG), Vacuum (in. Of Hg) – Bold Italic Figures
To determine subcooling for 404A, 407C, and 422D, use BUBBLE POINT values (temperatures above 50°F – gray background)
To determine superheat for 404A, 407C, and 422D, use DEW POINT values (temperatures 50°F and below)

°F °C 22 134a 404A 407C 410A 422D 507 32 0.0 57.5 27.8 72.4 52.1 101.2 55.2 75.8 33 0.6 58.8 28.6 73.9 53.4 103.3 56.5 77.4 34 1.1 60.2 29.5 75.5 54.8 105.4 57.9 79.0 35 1.7 61.5 30.4 77.1 56.1 107.5 59.3 80.7 36 2.2 62.9 31.3 78.7 57.5 109.7 60.6 82.3 38 3.3 65.7 33.1 82.0 60.3 111.9 62.0 84.0 38 3.3 65.7 33.1 82.0 60.3 111.6 66.4 89.2 42 5.6 71.5 37.0 88.8 66.1 123.2 69.4 92.8 42 5.6 71.5 37.0 88.8 <th>Т</th> <th>EMP.</th> <th></th> <th>R</th> <th>EFRIGER.</th> <th>ANT</th> <th></th> <th></th> <th></th>	Т	EMP.		R	EFRIGER.	ANT			
33 0.6 58.8 28.6 73.9 53.4 103.3 56.5 77.4 34 1.1 60.2 29.5 75.5 54.8 105.4 57.9 79.0 35 1.7 61.5 30.4 77.1 56.1 107.5 59.3 80.7 37 2.8 64.3 32.2 80.3 58.9 111.9 62.0 84.0 38 3.3 65.7 33.1 82.0 60.3 114.1 63.5 85.7 40 4.4 68.6 35.0 85.4 63.2 118.6 66.4 89.2 42 5.6 71.5 37.0 88.8 66.1 123.2 69.4 92.8 44 6.7 77.6 41.1 96.0 72.3 132.8 75.6 100.2 48 8.9 80.8 43.2 99.8 75.5 137.8 78.9 104.0 50 10.0 84.1 45.4	°F	°C	22	134a	404A	407C	410A	422D	507
34 1.1 60.2 29.5 75.5 54.8 105.4 57.9 79.0 35 1.7 61.5 30.4 77.1 56.1 107.5 59.3 80.7 36 2.2 62.9 31.3 78.7 57.5 109.7 60.6 82.3 38 3.3 65.7 33.1 82.0 60.3 114.1 63.5 85.7 40 4.4 68.6 35.0 85.4 63.2 118.6 66.4 89.2 42 5.6 71.5 37.0 88.8 66.1 123.2 69.4 92.8 44 6.7 74.5 39.0 92.4 69.2 127.9 72.5 96.4 48 8.9 80.8 43.2 99.8 75.5 137.8 78.9 100.2 48 8.9 80.8 43.2 19.2 101.7 148.1 96.1 112.0 50 10.0 84.1 45.4 <t></t>	32	0.0	57.5	27.8	72.4		101.2	55.2	75.8
35 1.7 61.5 30.4 77.1 56.1 107.5 59.3 80.7 36 2.2 62.9 31.3 78.7 57.5 109.7 60.6 82.3 37 2.8 64.3 32.2 80.3 58.9 111.9 62.0 84.0 38 3.3 65.7 33.1 82.0 60.3 114.1 63.5 85.7 40 4.4 68.6 35.0 85.4 63.2 118.6 66.4 89.2 42 5.6 71.5 37.0 88.8 66.1 123.2 69.4 92.8 44 6.7 74.5 39.0 92.4 69.2 127.9 72.5 96.4 48 8.9 80.8 43.2 99.8 75.5 137.8 78.9 104.0 50 10.0 84.1 45.4 103.6 78.8 142.9 82.2 108.0 51 11.1 87.4 47.7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
36 2.2 62.9 31.3 78.7 57.5 109.7 60.6 82.3 37 2.8 64.3 32.2 80.3 58.9 111.9 62.0 84.0 38 3.3 65.7 33.1 82.0 60.3 114.1 63.5 85.7 40 4.4 68.6 35.0 85.4 63.2 118.6 66.4 98.2 42 5.6 71.5 37.0 88.8 66.1 123.2 69.4 92.8 44 6.7 74.5 39.0 92.4 69.2 127.9 72.5 96.4 46 7.8 77.6 41.1 96.0 72.3 132.8 75.6 100.2 48 8.9 80.8 43.2 99.8 75.5 137.8 78.9 104.0 50 10.0 84.1 45.0 103.6 126.7 104.1 112.0 105.0 104.0 112.0 105.0 104.0 112.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
37 2.8 64.3 32.2 80.3 58.9 111.9 62.0 84.0 38 3.3 667.1 33.1 82.0 60.3 114.1 63.5 85.7 40 4.4 68.6 35.0 85.4 63.2 118.6 66.4 89.2 42 5.6 71.5 37.0 88.8 66.1 123.2 69.4 92.8 46 7.8 77.6 41.1 96.0 72.3 132.8 75.6 100.2 48 8.9 80.8 43.2 99.8 75.5 137.8 78.9 104.0 50 10.0 84.1 45.4 103.6 78.8 142.9 82.2 108.0 52 11.1 87.4 47.7 109.2 101.7 148.1 96.1 112.0 54 12.2 90.8 50.0 113.3 105.6 153.5 99.8 116.1 56 13.3 94.4 52.4									
38 3.3 65.7 33.1 82.0 60.3 114.1 63.5 85.7 39 3.9 67.1 34.1 83.7 61.7 116.3 64.9 87.5 40 4.4 68.6 35.0 85.4 63.2 118.6 66.4 89.2 42 5.6 71.5 37.0 88.8 66.1 123.2 69.4 92.8 44 6.7 74.5 39.0 92.4 69.2 127.9 72.5 96.4 48 8.9 80.8 43.2 99.8 75.5 137.8 78.9 104.0 50 10.0 84.1 45.4 103.6 78.8 142.9 82.2 108.0 52 11.1 87.4 47.7 109.2 101.7 148.1 96.1 112.0 54 12.2 90.8 50.0 113.3 105.6 153.5 99.8 116.1 56 13.3 94.4 52.4									
39									
40									
42 5.6 71.5 37.0 88.8 66.1 123.2 69.4 92.8 44 6.7 74.5 39.0 92.4 69.2 127.9 72.5 96.4 48 8.9 80.8 43.2 99.8 75.5 137.8 78.9 104.0 50 10.0 84.1 45.4 103.6 78.8 142.9 82.2 108.0 52 11.1 87.4 47.7 109.2 101.7 148.1 96.1 112.0 54 12.2 90.8 50.0 113.3 105.6 153.5 99.8 116.1 56 13.3 94.4 52.4 117.4 109.6 159.0 103.6 120.4 58 14.4 98.0 54.9 121.7 113.7 164.7 107.4 124.7 60 15.6 101.6 57.4 126.0 117.9 170.4 114.4 129.1 62 16.7 105.4									
44 6.7 74.5 39.0 92.4 69.2 127.9 72.5 96.4 46 7.8 77.6 41.1 96.0 72.3 132.8 75.6 100.0 50 10.0 84.1 45.4 103.6 78.8 142.9 82.2 108.0 52 11.1 87.4 47.7 109.2 101.7 148.1 96.1 112.0 54 12.2 90.8 50.0 113.3 105.6 153.5 99.8 16.1 112.0 56 13.3 94.4 52.4 117.4 109.6 159.0 103.6 120.4 58 14.4 98.0 54.9 121.7 113.7 164.7 107.4 111.4 129.1 62 16.7 105.4 60.0 130.5 122.3 176.3 115.4 133.7 64 17.8 109.3 62.7 135.0 126.7 182.4 119.5 138.3 66									
46					92.4				
50 10.0 84.1 45.4 103.6 78.8 142.9 82.2 108.0 52 11.1 87.4 47.7 109.2 101.7 148.1 96.1 112.0 54 12.2 90.8 50.0 113.3 105.6 153.5 99.8 116.1 56 13.3 94.4 52.4 117.4 109.6 159.0 103.6 120.4 58 14.4 98.0 54.9 121.7 113.7 164.7 107.4 1124.7 60 15.6 101.6 57.4 126.0 117.9 170.4 111.4 129.1 62 16.7 105.4 60.0 130.5 122.3 176.3 115.4 133.7 64 17.8 109.3 62.7 135.0 126.7 182.4 119.5 138.3 66 18.9 113.2 65.4 139.7 131.2 188.6 123.8 144.19.9 70 21.1 <	46	7.8		41.1	96.0	72.3	132.8		
52 11.1 87.4 47.7 109.2 101.7 148.1 96.1 112.0 54 12.2 90.8 50.0 113.3 105.6 153.5 99.8 116.1 56 13.3 94.4 52.4 117.4 109.6 159.0 103.6 120.4 68 14.4 98.0 54.9 121.7 113.7 164.7 107.4 124.7 60 15.6 101.6 57.4 126.0 117.9 170.4 111.4 129.1 62 16.7 105.4 60.0 130.5 122.3 176.3 115.4 133.7 64 17.8 109.3 62.7 135.0 126.7 182.4 119.5 138.3 66 18.9 113.2 665.4 139.7 131.2 188.6 123.8 143.1 70 21.1 121.4 71.1 149.3 140.5 201.4 132.5 152.9 72 22.2 <			80.8						
54 12.2 90.8 50.0 113.3 105.6 153.5 99.8 116.1 56 13.3 94.4 52.4 117.4 109.6 159.0 103.6 120.4 60 15.6 101.6 57.4 126.0 117.9 170.4 111.4 129.1 62 16.7 105.4 60.0 130.5 122.3 176.3 115.4 133.7 64 17.8 109.3 62.7 135.0 126.7 182.4 119.5 138.3 66 18.9 113.2 66.4 139.7 131.2 188.6 123.8 143.1 70 21.1 121.4 71.1 149.3 140.5 201.4 132.5 152.9 72 22.2 125.7 74.1 154.3 145.4 208.0 137.1 163.0 70 21.1 121.4 71.1 149.3 140.5 201.4 132.5 152.9 72 22.2									
56 13.3 94.4 52.4 117.4 109.6 159.0 103.6 120.4 58 14.4 98.0 54.9 121.7 113.7 164.7 107.4 124.7 60 15.6 101.6 57.4 126.0 117.9 170.4 111.4 122.1 62 16.7 105.4 60.0 130.5 122.3 176.3 115.4 133.7 64 17.8 109.3 62.7 135.0 126.7 182.4 119.5 138.3 66 18.9 113.2 65.4 139.7 131.2 188.6 123.8 143.1 70 21.1 121.4 71.1 149.3 140.5 201.4 132.5 152.9 72 22.2 125.7 74.1 154.3 145.4 208.0 137.1 158.0 74 23.3 130.0 77.1 159.4 150.3 214.8 141.7 163.2 76 24.4									
58 14.4 98.0 54.9 121.7 113.7 164.7 107.4 124.7 60 15.6 101.6 57.4 126.0 117.9 170.4 111.4 129.1 62 16.7 105.4 60.0 130.5 122.3 176.3 115.4 133.7 64 17.8 109.3 62.7 135.0 126.7 182.4 119.5 138.3 66 18.9 113.2 65.4 139.7 131.2 188.6 123.8 143.1 68 20.0 117.3 68.2 144.4 135.8 194.9 128.1 147.9 70 21.1 121.4 71.1 149.3 140.5 201.4 132.5 152.9 72 22.2 125.7 74.1 154.3 145.4 208.0 137.1 158.0 74 23.3 130.0 77.1 159.4 150.3 214.8 141.7 163.2 78 25.6									
60 15.6 101.6 57.4 126.0 117.9 170.4 111.4 129.1 62 16.7 105.4 60.0 130.5 122.3 176.3 115.4 133.7 64 17.8 109.3 62.7 135.0 126.7 182.4 119.5 138.3 66 18.9 113.2 65.4 139.7 131.2 188.6 123.8 143.1 68 20.0 117.3 68.2 144.4 135.8 194.9 128.1 147.9 70 21.1 121.4 71.1 149.3 140.5 201.4 132.5 152.9 72 22.2 125.7 74.1 154.3 145.4 208.0 137.1 158.0 74 23.3 130.0 77.1 159.4 150.3 214.8 141.7 163.2 76 24.4 134.5 80.2 164.6 155.4 221.8 146.5 168.5 78 25.6									
62 16.7 105.4 60.0 130.5 122.3 176.3 115.4 133.7 64 17.8 109.3 62.7 135.0 126.7 182.4 119.5 138.3 68 18.9 113.2 65.4 139.7 131.2 188.6 123.8 144.1 68 20.0 117.3 68.2 144.4 135.8 194.9 128.1 147.9 70 21.1 121.4 71.1 149.3 140.5 201.4 132.5 152.9 72 22.2 125.7 74.1 154.3 145.4 208.0 137.1 158.0 74 23.3 130.0 77.1 159.4 150.3 214.8 141.7 163.2 78 25.6 139.0 83.4 169.9 160.5 228.9 151.3 174.0 80 26.7 143.6 86.7 175.4 165.8 236.1 156.3 179.5 82 27.8									
64 17.8 109.3 62.7 135.0 126.7 182.4 119.5 138.3 66 18.9 113.2 65.4 139.7 131.2 188.6 123.8 143.1 70 21.1 121.4 71.1 149.3 140.5 201.4 132.5 152.9 72 22.2 125.7 74.1 154.3 145.4 208.0 137.1 158.0 74 23.3 130.0 77.1 159.4 150.3 214.8 141.7 163.2 76 24.4 134.5 80.2 164.6 155.4 221.8 146.5 168.5 78 25.6 139.0 83.4 169.9 160.5 228.9 151.3 174.0 80 26.7 143.6 86.7 175.4 165.8 236.1 156.3 179.5 82 27.8 144.4 90.0 181.0 171.2 243.6 161.3 185.2 94.9 153.2									
66 18.9 113.2 65.4 139.7 131.2 188.6 123.8 143.1 70 21.1 121.4 71.1 149.3 140.5 201.4 132.5 152.9 72 22.2 125.7 74.1 154.3 145.4 208.0 137.1 158.0 74 23.3 130.0 77.1 159.4 150.3 214.8 141.7 163.2 76 24.4 134.5 80.2 164.6 155.4 221.8 146.5 168.5 78 25.6 139.0 83.4 169.9 160.5 228.9 151.3 174.0 80 26.7 143.6 86.7 175.4 165.8 236.1 156.3 179.5 82 27.8 148.4 90.0 181.0 171.2 243.6 161.3 185.2 84 28.9 153.2 93.5 186.7 176.8 251.2 166.5 191.0 86 30.0									
68 20.0 117.3 68.2 144.4 135.8 194.9 128.1 147.9 70 21.1 121.4 71.1 149.3 140.5 201.4 132.5 152.9 72 22.2 125.7 74.1 154.3 145.4 208.0 137.1 158.0 74 23.3 130.0 77.1 159.4 150.3 214.8 141.7 163.2 76 24.4 134.5 80.2 164.6 155.4 221.8 146.5 168.5 78 25.6 139.0 83.4 169.9 160.5 228.9 151.3 174.0 80 26.7 143.6 86.7 175.4 165.8 236.1 156.3 179.5 82 27.8 148.4 90.0 181.0 171.2 243.6 161.3 185.2 84 28.9 153.2 93.5 186.7 176.8 251.2 166.5 191.0 86 30.0		18.9							
72 22.2 125.7 74.1 154.3 145.4 208.0 137.1 158.0 74 23.3 130.0 77.1 159.4 150.3 214.8 141.7 163.2 76 24.4 134.5 80.2 164.6 155.4 221.8 146.5 168.5 78 25.6 139.0 83.4 169.9 160.5 228.9 151.3 174.0 80 26.7 143.6 86.7 175.4 165.8 236.1 156.3 179.5 82 27.8 148.4 90.0 181.0 171.2 243.6 161.3 185.2 84 28.9 153.2 93.5 186.7 176.8 251.2 166.5 191.0 86 30.0 158.2 97.0 192.5 182.4 258.9 171.8 197.0 88 31.1 163.2 100.6 198.4 188.2 266.8 177.2 203.0 92 33.3	68	20.0	117.3	68.2			194.9	128.1	
74 23.3 130.0 77.1 159.4 150.3 214.8 141.7 163.2 76 24.4 134.5 80.2 164.6 155.4 221.8 146.5 168.5 78 25.6 139.0 83.4 169.9 160.5 228.9 151.3 174.0 80 26.7 143.6 86.7 175.4 165.8 236.1 156.3 179.5 82 27.8 148.4 90.0 181.0 171.2 243.6 161.3 185.2 84 28.9 153.2 93.5 186.7 176.8 251.2 166.5 191.0 86 30.0 158.2 97.0 192.5 182.4 258.9 171.8 197.0 88 31.1 163.2 100.6 198.4 188.2 266.8 177.2 203.0 90 32.2 168.4 104.3 204.5 194.1 274.9 182.7 209.2 92 33.3									
76 24.4 134.5 80.2 164.6 155.4 221.8 146.5 168.5 78 25.6 139.0 83.4 169.9 160.5 228.9 151.3 174.0 80 26.7 143.6 86.7 175.4 165.8 236.1 156.3 179.5 82 27.8 148.4 90.0 181.0 171.2 243.6 161.3 185.2 84 28.9 153.2 93.5 186.7 176.8 251.2 166.5 191.0 86 30.0 158.2 97.0 192.5 182.4 258.9 171.8 197.0 88 31.1 163.2 100.6 198.4 188.2 266.8 177.2 203.0 90 32.2 168.4 104.3 204.5 194.1 274.9 182.7 209.2 92 33.3 173.7 108.1 210.7 200.1 283.2 188.4 215.5 94 34.4									
78 25.6 139.0 83.4 169.9 160.5 228.9 151.3 174.0 80 26.7 143.6 86.7 175.4 165.8 236.1 156.3 179.5 82 27.8 148.4 90.0 181.0 171.2 243.6 161.3 185.2 84 28.9 153.2 93.5 186.7 176.8 251.2 166.5 191.0 86 30.0 158.2 97.0 192.5 182.4 258.9 171.8 197.0 88 31.1 163.2 100.6 198.4 188.2 266.8 177.2 203.0 90 32.2 168.4 104.3 204.5 194.1 274.9 182.7 209.2 92 33.3 173.7 108.1 217.0 206.3 291.6 194.1 222.0 96 35.6 184.6 115.9 223.4 212.5 300.3 200.0 228.6 98 36.7									
80 26.7 143.6 86.7 175.4 165.8 236.1 156.3 179.5 82 27.8 148.4 90.0 181.0 171.2 243.6 161.3 185.2 84 28.9 153.2 93.5 186.7 176.8 251.2 166.5 191.0 86 30.0 158.2 97.0 192.5 182.4 258.9 171.8 197.0 88 31.1 163.2 100.6 198.4 188.2 266.8 177.2 203.0 90 32.2 168.4 104.3 204.5 194.1 274.9 182.7 209.2 92 33.3 173.7 108.1 210.7 200.1 283.2 188.4 215.5 94 34.4 179.1 112.0 217.0 206.3 291.6 194.1 222.0 96 35.6 184.6 115.9 223.4 212.5 300.3 200.0 228.6 98 36.7									
82 27.8 148.4 90.0 181.0 171.2 243.6 161.3 185.2 84 28.9 153.2 93.5 186.7 176.8 251.2 166.5 191.0 86 30.0 158.2 97.0 192.5 182.4 258.9 171.8 197.0 88 31.1 163.2 100.6 198.4 188.2 266.8 177.2 203.0 90 32.2 168.4 104.3 204.5 194.1 274.9 182.7 209.2 92 33.3 173.7 108.1 210.7 200.1 283.2 188.4 215.5 94 34.4 179.1 112.0 217.0 206.3 291.6 194.1 222.0 96 35.6 184.6 115.9 223.4 212.5 300.3 200.0 228.6 98 36.7 190.2 120.0 230.0 219.0 309.1 206.0 235.3 100 37.8 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
84 28.9 153.2 93.5 186.7 176.8 251.2 166.5 191.0 86 30.0 158.2 97.0 192.5 182.4 258.9 171.8 197.0 88 31.1 163.2 100.6 198.4 188.2 266.8 177.2 203.0 90 32.2 168.4 104.3 204.5 194.1 274.9 182.7 209.2 92 33.3 173.7 108.1 210.7 200.1 283.2 188.4 215.5 94 34.4 179.1 112.0 217.0 206.3 291.6 194.1 222.0 96 35.6 184.6 115.9 223.4 212.5 300.3 200.0 228.6 98 36.7 190.2 120.0 230.0 219.0 309.1 206.0 235.3 100 37.8 195.9 124.2 236.8 225.5 318.1 212.1 242.2 102 38.9<									185.2
86 30.0 158.2 97.0 192.5 182.4 258.9 171.8 197.0 88 31.1 163.2 100.6 198.4 188.2 266.8 177.2 203.0 90 32.2 168.4 104.3 204.5 194.1 274.9 182.7 209.2 92 33.3 173.7 108.1 210.7 200.1 283.2 188.4 215.5 94 34.4 179.1 112.0 217.0 206.3 291.6 194.1 222.0 96 35.6 184.6 115.9 223.4 212.5 300.3 200.0 228.6 98 36.7 190.2 120.0 230.0 219.0 309.1 206.0 235.3 100 37.8 195.9 124.2 236.8 225.5 318.1 212.1 242.2 102 38.9 201.8 128.4 243.6 232.2 327.2 218.4 249.2 104 40.									191.0
90 32.2 168.4 104.3 204.5 194.1 274.9 182.7 209.2 92 33.3 173.7 108.1 210.7 200.1 283.2 188.4 215.5 94 34.4 179.1 112.0 217.0 206.3 291.6 194.1 222.0 96 35.6 184.6 115.9 223.4 212.5 300.3 200.0 228.6 98 36.7 190.2 120.0 230.0 219.0 309.1 206.0 235.3 100 37.8 195.9 124.2 236.8 225.5 318.1 212.1 242.2 102 38.9 201.8 128.4 243.6 232.2 327.2 218.4 249.2 104 40.0 207.7 132.7 250.6 239.0 336.6 224.8 256.3 106 41.1 213.8 137.2 257.8 245.9 346.2 231.3 263.7 108									
92 33.3 173.7 108.1 210.7 200.1 283.2 188.4 215.5 94 34.4 179.1 112.0 217.0 206.3 291.6 194.1 222.0 96 35.6 184.6 115.9 223.4 212.5 300.3 200.0 228.6 98 36.7 190.2 120.0 230.0 219.0 309.1 206.0 235.3 100 37.8 195.9 124.2 236.8 225.5 318.1 212.1 242.2 102 38.9 201.8 128.4 243.6 232.2 327.2 218.4 249.2 104 40.0 207.7 132.7 250.6 239.0 336.6 224.8 256.3 106 41.1 213.8 137.2 257.8 245.9 346.2 231.3 263.7 108 42.2 220.0 141.7 265.1 253.0 355.9 237.9 271.1 110 <td< td=""><td>88</td><td>31.1</td><td>163.2</td><td>100.6</td><td>198.4</td><td>188.2</td><td>266.8</td><td></td><td>203.0</td></td<>	88	31.1	163.2	100.6	198.4	188.2	266.8		203.0
94 34.4 179.1 112.0 217.0 206.3 291.6 194.1 222.0 96 35.6 184.6 115.9 223.4 212.5 300.3 200.0 228.6 98 36.7 190.2 120.0 230.0 219.0 309.1 206.0 235.3 100 37.8 195.9 124.2 236.8 225.5 318.1 212.1 242.2 102 38.9 201.8 128.4 243.6 232.2 327.2 218.4 249.2 104 40.0 207.7 132.7 250.6 239.0 336.6 224.8 256.3 106 41.1 213.8 137.2 257.8 245.9 346.2 231.3 263.7 108 42.2 220.0 141.7 265.1 253.0 355.9 237.9 271.1 110 43.3 226.4 146.4 272.5 260.3 365.9 244.7 278.7 112 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
96 35.6 184.6 115.9 223.4 212.5 300.3 200.0 228.6 98 36.7 190.2 120.0 230.0 219.0 309.1 206.0 235.3 100 37.8 195.9 124.2 236.8 225.5 318.1 212.1 242.2 102 38.9 201.8 128.4 243.6 232.2 327.2 218.4 249.2 104 40.0 207.7 132.7 250.6 239.0 336.6 224.8 256.3 106 41.1 213.8 137.2 257.8 245.9 346.2 231.3 263.7 108 42.2 220.0 141.7 265.1 253.0 355.9 237.9 271.1 110 43.3 226.4 146.4 272.5 260.3 365.9 244.7 278.7 112 44.4 232.8 151.1 280.1 267.6 376.1 251.6 286.5 114 <			173.7					188.4	
98 36.7 190.2 120.0 230.0 219.0 309.1 206.0 235.3 100 37.8 195.9 124.2 236.8 225.5 318.1 212.1 242.2 102 38.9 201.8 128.4 243.6 232.2 327.2 218.4 249.2 104 40.0 207.7 132.7 250.6 239.0 336.6 224.8 256.3 106 41.1 213.8 137.2 257.8 245.9 346.2 231.3 263.7 108 42.2 220.0 141.7 265.1 253.0 355.9 237.9 271.1 110 43.3 226.4 146.4 272.5 260.3 365.9 244.7 278.7 112 44.4 232.8 151.1 280.1 267.6 376.1 251.6 286.5 114 45.6 239.4 156.0 287.9 275.1 386.4 258.6 294.4 116									
100 37.8 195.9 124.2 236.8 225.5 318.1 212.1 242.2 102 38.9 201.8 128.4 243.6 232.2 327.2 218.4 249.2 104 40.0 207.7 132.7 250.6 239.0 336.6 224.8 256.3 106 41.1 213.8 137.2 257.8 245.9 346.2 231.3 263.7 108 42.2 220.0 141.7 265.1 253.0 355.9 237.9 271.1 110 43.3 226.4 146.4 272.5 260.3 365.9 244.7 278.7 112 44.4 232.8 151.1 280.1 267.6 376.1 251.6 286.5 114 45.6 239.4 156.0 287.9 275.1 386.4 258.6 294.4 116 46.7 246.1 160.9 295.8 282.8 397.0 265.8 302.4 118									
102 38.9 201.8 128.4 243.6 232.2 327.2 218.4 249.2 104 40.0 207.7 132.7 250.6 239.0 336.6 224.8 256.3 106 41.1 213.8 137.2 257.8 245.9 346.2 231.3 263.7 108 42.2 220.0 141.7 265.1 253.0 355.9 237.9 271.1 110 43.3 226.4 146.4 272.5 260.3 365.9 244.7 278.7 112 44.4 232.8 151.1 280.1 267.6 376.1 251.6 286.5 114 45.6 239.4 156.0 287.9 275.1 386.4 258.6 294.4 116 46.7 246.1 160.9 295.8 282.8 397.0 265.8 302.4 118 47.8 253.0 166.0 303.8 290.6 407.8 273.2 310.7 120									
104 40.0 207.7 132.7 250.6 239.0 336.6 224.8 256.3 106 41.1 213.8 137.2 257.8 245.9 346.2 231.3 263.7 108 42.2 220.0 141.7 265.1 253.0 355.9 237.9 271.1 110 43.3 226.4 146.4 272.5 260.3 365.9 244.7 278.7 112 44.4 232.8 151.1 280.1 267.6 376.1 251.6 286.5 114 45.6 239.4 156.0 287.9 275.1 386.4 258.6 294.4 116 46.7 246.1 160.9 295.8 282.8 397.0 265.8 302.4 118 47.8 253.0 166.0 303.8 290.6 407.8 273.2 310.7 120 48.9 260.0 171.2 312.1 298.6 418.8 280.6 319.1 125									
106 41.1 213.8 137.2 257.8 245.9 346.2 231.3 263.7 108 42.2 220.0 141.7 265.1 253.0 355.9 237.9 271.1 110 43.3 226.4 146.4 272.5 260.3 365.9 244.7 278.7 112 44.4 232.8 151.1 280.1 267.6 376.1 251.6 286.5 114 45.6 239.4 156.0 287.9 275.1 386.4 258.6 294.4 116 46.7 246.1 160.9 295.8 282.8 397.0 265.8 302.4 118 47.8 253.0 166.0 303.8 290.6 407.8 273.2 310.7 120 48.9 260.0 171.2 312.1 298.6 418.8 280.6 319.1 125 51.7 278.0 184.6 333.3 319.2 447.4 299.9 340.8									
108 42.2 220.0 141.7 265.1 253.0 355.9 237.9 271.1 110 43.3 226.4 146.4 272.5 260.3 365.9 244.7 278.7 112 44.4 232.8 151.1 280.1 267.6 376.1 251.6 286.5 114 45.6 239.4 156.0 287.9 275.1 386.4 258.6 294.4 116 46.7 246.1 160.9 295.8 282.8 397.0 265.8 302.4 118 47.8 253.0 166.0 303.8 290.6 407.8 273.2 310.7 120 48.9 260.0 171.2 312.1 298.6 418.8 280.6 319.1 125 51.7 278.0 184.6 333.3 319.2 447.4 299.9 340.8									
110 43.3 226.4 146.4 272.5 260.3 365.9 244.7 278.7 112 44.4 232.8 151.1 280.1 267.6 376.1 251.6 286.5 114 45.6 239.4 156.0 287.9 275.1 386.4 258.6 294.4 116 46.7 246.1 160.9 295.8 282.8 397.0 265.8 302.4 118 47.8 253.0 166.0 303.8 290.6 407.8 273.2 310.7 120 48.9 260.0 171.2 312.1 298.6 418.8 280.6 319.1 125 51.7 278.0 184.6 333.3 319.2 447.4 299.9 340.8									
114 45.6 239.4 156.0 287.9 275.1 386.4 258.6 294.4 116 46.7 246.1 160.9 295.8 282.8 397.0 265.8 302.4 118 47.8 253.0 166.0 303.8 290.6 407.8 273.2 310.7 120 48.9 260.0 171.2 312.1 298.6 418.8 280.6 319.1 125 51.7 278.0 184.6 333.3 319.2 447.4 299.9 340.8					272.5			244.7	
116 46.7 246.1 160.9 295.8 282.8 397.0 265.8 302.4 118 47.8 253.0 166.0 303.8 290.6 407.8 273.2 310.7 120 48.9 260.0 171.2 312.1 298.6 418.8 280.6 319.1 125 51.7 278.0 184.6 333.3 319.2 447.4 299.9 340.8		44.4							
118 47.8 253.0 166.0 303.8 290.6 407.8 273.2 310.7 120 48.9 260.0 171.2 312.1 298.6 418.8 280.6 319.1 125 51.7 278.0 184.6 333.3 319.2 447.4 299.9 340.8									
120 48.9 260.0 171.2 312.1 298.6 418.8 280.6 319.1 125 51.7 278.0 184.6 333.3 319.2 447.4 299.9 340.8									
125 51.7 278.0 184.6 333.3 319.2 447.4 299.9 340.8									