AIR CONDITIONING

INSTALLATION CERTIFICATION

Certification Information

Scope - Tests a candidate's knowledge of the installation, service, maintenance, and repair of HVAC systems. System sizes are limited to 30 tons or less cooling capacity.

Oualifications

- Y This is a test and certification for **TECHNICIANS** in the HVAC industry. The test is designed for top level installation technicians. This test for certification is not intended for the HVAC system designer, sales force, or the engineering community. To become NATE-certified, you must pass this specialty and a CORE INSTALL exam.
- Y This test will measure what 80% of the **Air Conditioning** candidates have an 80% likelihood of encountering at least once during the year on a **NATIONAL** basis.
- Y Suggested requirement is one year of field experience working on Air Conditioning systems as an installation technician and technical training for theoretical knowledge.

Test Specifications

Closed Book 2.5 Hour Time Limit 100 Questions Passing Score: PASS/FAIL Listed are the percentages of questions that will be in each section of the **Air Conditioning** exam.

SECTION AREA DESCRIPTION	SECTION PERCENTAGE
Installation	43%
Service	10%
System Components	27%
Applied Knowledge	20%

Air Conditioning Industry References

The reference materials listed below will be helpful in preparing for this exam. These materials may <u>NOT</u> contain all of the information necessary to be competent in this specialty or to pass the exam.

- American National Standards Institute (ANSI) / Air Conditioning Contractors of America (ACCA) Manuals Latest Edition
 - "D", "J", "QI" Quality Installation, and "S"
- ACCA Manuals "T" and "RS" Latest Editions
- ACCA Residential Duct Diagnostics and Repair Latest Edition
- AHRI-Hydronics Section-IBO/RAH Latest Edition
- International Energy Conservation Code Latest Edition with Addendum
- International Mechanical Code Latest Edition with Addendum
- International Plumbing Code Latest Edition with Addendum
- Uniform Mechanical Code Latest Edition with Addendum
- Specification of Energy-Efficient Installation and Maintenance Practices for Residential HVAC Systems developed by Consortium for Energy
 Efficiency (CEE) Latest Edition with Addendum
- ASHRAE Standard-62.2 Latest Edition with Addendum
- ANSI / ASHRAE Standard-152-2004 Latest Edition with Addendum
- ENERGY STAR™ Home Sealing Standards Latest Edition with Addendum
- Duct Calculators Sheet Metal, Ductboard, and Flexible Duct
- American National Standards Institute (ANSI) / Sheet Metal and Air Conditioning Contractors' National Association, Inc. (SMACNA) Manuals
 - HVAC Duct Construction Standards Metal and Flexible
- Sheet Metal and Air Conditioning Contractors' National Association, Inc. (SMACNA) Manuals
 - Fibrous Glass Duct Construction Standards, Residential Comfort System Installation Standards Manual, and HVAC Air Duct Leakage Test Manual
- Air Diffusion Council Flexible Duct Performance & Installation Standards
- North American Insulation Manufacturers Association (NAIMA) Manuals
 - Fibrous Glass Duct Construction Standards and A Guide to Insulated Air Duct Systems
- International Fuel Gas Code Latest Edition with Addendum
- National Fuel Gas Code Latest Edition with Addendum

Passing Score Development Process

The passing scores for the NATE tests were established using a systematic procedure (a Passing Score Study). This procedure employed the judgment of experienced HVAC professionals and educators representing various HVAC specialties and geographical areas. The passing scores were set using criteria defining competent performance. The passing score for different test forms may vary slightly due to the comparative difficulty of the test questions.

Exam Copyrights

All testing documents and questions are the copyrighted property of North American Technician Excellence Inc.-NATE. It is forbidden under federal copyright law to copy, reproduce, record, distribute or display these documents or questions by any means, in whole or part, without written permission from NATE. Doing so may subject you to severe civil and/or criminal penalties, including imprisonment and/or fines for criminal violations.

Air Conditioning - Air to Air

Installer

INSTALLATION

FABRICATING COPPER TUBING

REFRIGERANT LINE INSTALLATION

Locating, mounting, and routing

Understanding limitations of length and diameter

BENDING COPPER TUBING

Making a proper bend with spring benders

Making a proper bend with cam type benders

COPPER TUBING PREPARATION

Cutting copper tubing

Reaming copper tubing

Cleaning copper tubing

Swaging copper tubing

BRAZING

Overview of brazing copper to copper

Oxyacetylene brazing

Using air / fuel to solder

Use of purging gas when brazing

Overview of brazing copper to brass

Overview of brazing copper to steel

Selection of brazing materials

FLARE FITTINGS

Making a flare fitting - single and double

Installing with flare fittings

BRAZING & SOLDERING EQUIPMENT

Brazing products - rods, flux, etc.

Oxyacetylene brazing equipment

Gas purging equipment in field brazing

Air / Fuel systems - acetylene, propane, MAP, etc.

Soldering products - solder, flux, and torches

Tool maintenance and care

INSTALLING CONDENSING UNIT

INSTALLING AND CONNECTING CONDENSING UNIT

Locating unit

Preparing site

Placing unit

Wiring outdoor units

Installing refrigerant lines

INSTALLING PACKAGED UNITS

INSTALLING AND CONNECTING

Locating equipment

Preparing site

Lifting unit

Sealing unit

Wiring

INSTALLING INDOOR EQUIPMENT

INSTALLATION OF INDOOR AIR HANDLERS / FURNACES

Installing coil and air handler / furnace

Connecting ductwork

Connecting refrigerant lines

Connecting condensate lines

Wiring air handler / furnace

Wiring thermostats

Wiring electronic air cleaners

TEV's - installation

Installing fixed metering devices

Auxiliary heat

Handling - lifting, hanging

Trapping for condensate lines

Service access and clearance considerations

EVACUATION & CHARGING

SAFE HANDLING OF REFRIGERANT CONTAINERS

Disposal

Securing refrigerants for transport

Signage and documentation for refrigerants

Proper storage

Proper container filling

EVACUATION

Overview - use of a vacuum pump

Overview - use of a micron gauge

Use of a manifold gauge set in evacuation

Deep single evacuation process

Removing core of access valves

LEAK CHECKING & DETECTION

Overview of leak checking and detection

Leak checking with electronic leak detectors

Leak checking with soap solutions

Gas pressurization for leak checking

Leak checking with ultrasonic leak detectors

CHARGING METHOD

Weigh in method

Superheat method and where used

Subcooling method and where used

Charging blended refrigerants

DUCT INSTALLATION

DUCT FABRICATION EQUIPMENT

Ductboard tools - 90 V-groove, end cutoff, female shiplap, hole cutter, stapler, etc.

Flex tools - tensioning strap tools, knives, etc.

Metal tools - metal snips, sheers, benders, breaks, hand formers, calipers, rulers, stapler, etc.

INSTALLING METAL DUCT

Assembly methods for rectangular duct

Assembly methods for round duct

Hanging ductwork

Sealing metal duct

Insulation - internal and external

INSTALLING FLEXIBLE DUCT

Assembly methods - appropriate length

Hanging flexible duct

Sealing flexible duct

Installation technique

INSTALLING DUCTBOARD

Assembly methods for ductboard - supports

Hanging methods for ductboard

Sealing ductboard

Installation technique

INSTALLING GRILLES, REGISTERS, DIFFUSERS, & DAMPER

Mounting to ductwork

Securing methods

Sealing methods

FIELD CONSTRUCTION / INSTALLATION

Techniques for joining dissimilar duct

Duct of alternate materials - wood, aluminum, etc.

CHASES USED AS DUCTS

Floor joists as air ducts

Vertical chases

INSTALLING ACCESSORIES

INSTALLING THERMOSTATS

Locating and mounting

Wiring electromechanical thermostats

Wiring electronic thermostats

Setting anticipators when used

Installing air side low ambient control

Installing outdoor thermostat

Setting balance point on outdoor thermostat

INSTALLING ELECTRONIC AIR CLEANERS

Installing to a unit - sealing

Wiring

Controlling electronic air cleaners

INSTALLING ECONOMIZERS

Installing

Wiring

Controlling economizers

FIELD WIRING

WIRING UNITS & CONTROL WIRING

Connecting electrical power

Connecting control circuits

Meeting manufacturer sizing requirements - wire sizing (size and number)

START-UP AND CHECKOUT

PRE-START PROCEDURES

Surveying installation - checking equipment match

Inspect connections for tightness

Set dip switches / jumpers on ECM motors

Set speed taps on multi-speed motors

Set adjustable pulleys on belt driven blowers

Ensure clean filter is in place and accessible

Ensure condensate line is flowing

START-UP PROCEDURES AND CHECKS

Surveying installation

Supply voltage checks

Motor checks

Checking sequences

Check fan rotation

Check scroll compressor rotation - high noise level, etc. Start-

up checklist and preparation

Metering device - refrigerant circuit checks

Airflow checks

Pressure checks

Temperature checks - dry bulb, wet bulb, etc.

LEAK DETECTION TOOLS

Soap solution

Electronic leak detectors

Ultrasonic leak detector

Halide leak detector

Use of dye leak detectors

Pressurization for leak detection

Meter calibration and maintenance

REFRIGERANT CIRCUIT TOOLS

MANIFOLD GAUGE SET

Manifold gauge set

How to read the gauge set

How to connect the gauge set for different purposes

Types and styles of gauge sets

Using the gauge set for diagnostics

Low loss fitting connections

Gauge calibration and maintenance

EVACUATION TOOLS

Vacuum pump

Micron gauge

Valve opening tools - core removers, etc.

Gauge calibration and maintenance

CHARGING TOOLS

Charging scales

Gauge calibration and maintenance

RETROFITTING

EQUIPMENT COMPONENT RETROFITTING

Changing out an outdoor unit

Changing out an indoor unit

Modifying ductwork for replacement equipment

BASIC DUCT FABRICATION

FABRICATION TECHNIQUES FOR METAL DUCT

Seam types - pittsburgh and snap lock

Joint types - drive slips, reinforced drive slips, "s" slip, and standing "s" slip

Use of strength breaks in rectangular duct

FABRICATION TECHNIQUES FOR DUCTBOARD

Layout of duct fitting

Groove cutting - hand / machine

Use of joint tape

AIRFLOW MEASUREMENTS

INTRODUCTION TO AIRFLOW MEASUREMENTS

Introduction to airflow

Static pressure

AIRFLOW VELOCITY MEASUREMENTS

Introduction to airflow velocity

Velometer - electronic and mechanical

Anemometer

Velocity measurement procedures

Gauge calibration

AIRFLOW PRESSURE MEASUREMENTS

Overview of static pressure measurements

Inclined manometer

Diaphragm type differential pressure gauge U-

tube manometer

Electronic manometer / pressure measurement

 $Gauge \, / \, meter \, calibration$

Absolute vs. Gauge Pressure

AIRFLOW VOLUME MEASUREMENTS

Introduction to volume

Airflow hood

Formulae for determining CFM of air

Formulae for weight of air

Locations for air volume measurements

AIRFLOW CHECKS & DESIGN TOOLS

Using manufacturer's airflow charts and tables

Using a duct calculator and design charts

SERVICE

DIAGNOSTICS

PRELIMINARY SYSTEM DIAGNOSTICS

Outdoor unit checks

Indoor unit checks

Wiring checks

Refrigerant line checks

Thermostat checks

Condensate drain checks

Accessories

ELECTRICAL CHECKS

Compressor circuits

Condenser fan circuits

Indoor blower circuits

Wall thermostat circuits

Transformer circuits

Electronic controllers - input / output

COMPONENT CHECKS - ELECTRICAL

Thermostat

Transformers

Overcurrent protection

Relays and contactors

Condenser fan motors

Indoor blower motors

Solenoid valves coils

REPAIR

Refrigerant circuit on coils

Ductwork

Electrical wiring

INTRODUCTION TO ELECTRICAL TROUBLESHOOTING

LOW VOLTAGE CIRCUITS

Voltage tests

Equipment continuity tests

Ground tests

LINE VOLTAGE CIRCUITS

Voltage tests

Equipment continuity tests

Ground tests

SYSTEM COMPONENTS

INTRODUCTION TO SYSTEMS

HEAT TRANSFER PRINCIPLES

Heat transfer - evaporations and condensation

Basic refrigeration circuit - 7 components

Temperature and pressure in the refrigerant circuit.

SPLIT SYSTEMS

Introduction to split system AC configurations and applications

Equipment locations and mounting

Duct designs for split systems air conditioners

Electrical layouts for split systems air conditioners

Refrigerant circuits for split systems air conditioners

Specifications for split system air conditioners

Attic / Crawlspace layouts for split systems air conditioners

Closet layouts for split systems air conditioners

Basement layouts for split systems air conditioners

Heat options with split system air conditioners

Ventilation options split systems air conditioners

Regional considerations in split system air conditioner designs

Special consideration of indoor coils above living space

PACKAGED SYSTEMS

Introduction to package AC configurations

Equipment locations for package air conditioners

Basic duct designs for packaged equipment

Electrical layouts with packaged air conditioners

Packaged equipment in single story applications

Packaged equipment in multi story applications

Packaged equipment applied with crawlspace duct designs

Heat options with packaged air conditioners

Ventilation options for packaged air conditioners

Economizer options

Regional considerations in packaged equipment

Specifications for packaged equipment

MULTI-CAPACITY SYSTEMS

Overview of multi-capacity systems

Sequencing of multi-capacity air conditioners

Refrigerant circuits of multi-capacity air conditioners

DUCT SYSTEMS

DUCT SYSTEMS

Duct system design

Duct configurations - extended plenum, reducing extended plenum, perimeter radial, perimeter loop,

overhead radial

Return configurations - ducted, central, etc.

Return grille locations - low sidewall, high sidewall, etc.

Supply locations - floor, sidewall, ceiling, etc.

WIRING LAYOUTS

POWER WIRING

Overview of power wiring

LOW VOLTAGE

Overview of low voltage wiring

COMPONENTS

OUTDOOR COILS

Types - basic designs

Airflow characteristics

COMPRESSORS

Fundamentals of compressor operations

Compressor types

REFRIGERANTS

Refrigerants used in Res./Lt. Com air conditioners

Properties of refrigerants used in Res./Lt. Com air conditioners

Using temperature-pressure chart

Refrigerant conservation

SERVICE VALVES

Front seating service valves

Back seating service valves

Gauge port

REFRIGERANT CIRCUIT ACCESSORIES

Operation fundamentals - accumulators

Operation fundamentals - filter-driers

Operation fundamentals - sight glasses, moisture indicators, liquid indicators, etc.

Operation fundamentals - mufflers

INDOOR COILS

Types - basic designs and operating characteristics of A-coil, slab, and slant indoor coils

Basics of selection

Condensate drains

METERING DEVICES

Types

Selection

BLOWERS AND FANS

Role of indoor blowers

Role of outdoor fans

Blower and fan performance

LINE SETS

Introduction to line sets

Application considerations when using line sets

AIR SIDE COMPONENTS

Dampers

Ventilation fittings

Electronic air cleaners (EAC's)

Electrostatic filters - non-electric

Media type filters

Fixed outdoor air damper

Insulating material Flexible connectors

GRILLES, REGISTERS, & DIFFUSERS

Types and uses

FASTENERS

Screws

Bolts

Nuts and washers

Lockpins

Rivets

ELECTRICAL COMPONENTS

Overcurrent protection

Capacitors

Solenoids

Crankcase heaters

Auxiliary strip heat

Transformers

CONSTANT AIRFLOW MOTORS

Intro to variable speed motors - ECM, BPM, and VSIM

Motor mounting and installation requirements

Electronic interface and setting for airflow requirements

ELECTROMECHANICAL SENSING CONTROLS

ELECTROMECHANICAL WALL THERMOSTATS

Basic thermostat types and operation

Thermostat terminals and wiring

Using electromechanical thermostats

ELECTROMECHANICAL TEMPERATURE CONTROLS

Introduction to bimetal controls

Disc type temperature limit controls

Introduction to vapor charged controls

Overview of electric heat high limits

Motor overloads

PRESSURE CONTROLS

Introduction to disc type pressure controls and hi/low controls

Operation of disc type pressure controls

ELECTROMECHANICAL OUTDOOR THERMOSTATS

Overview of outdoor thermostats

Outdoor thermostat wiring

Low ambient cooling controls

REFRIGERANT CIRCUIT CONTROLS

PRESSURE CONTROLS

High pressure limit controls

Low pressure limit controls

NON-SENSING CONTROLS

RELAYS AND CONTACTORS

Introduction to relays and contactors

Basics of relay and contactor operation - inrush and holding

Selecting relays and contactors

Application considerations for relays and contactors

ELECTRIC HEAT CONTROLS

Sequencers

ELECTRONIC CONTROLS

ELECTRONIC THERMOSTATS

Fundamentals of electronic thermostats

Overview of electronic thermostat operation

ZONE CONTROLS

Fundamentals of zone controls

Typical zone control logic

ELECTRONIC COMPRESSOR CONTROLS

Fundamentals of compressor controls

Operation of compressor controls

ELECTRONIC TIMERS

Introduction to blower delay timers

Introduction to compressor delay timers

APPLIED KNOWLEDGE: REGS, CODES, & DESIGN

AIR QUALITY REGULATIONS

INDOOR AIR QUALITY

Fresh air supplies

ELECTRICAL CODE

REQUIREMENTS

Overview of electrical code

Circuit breaker and fuse requirements

General wiring practices

Class I wire sizing

Class II wire sizing

Conduit sizing

Definitions

STATE AND LOCAL REGULATIONS AND CODES

STATE AND LOCAL REGULATIONS

State requirements for technicians

CODES

Plumbing

Municipalities

HVAC for Lt. Commercial

FIRE PROTECTION REGULATIONS AND CODES

REQUIRED COMPONENTS

Return air sensors

Fire dampers

FIRE PREVENTION

Overview

DESIGN CONSIDERATIONS - COMFORT

TEMPERATURE

Designing for capacity

HUMIDITY

Role of humidity in comfort

INDOOR AIR QUALITY

Ventilation - comfort

Air cleaning for comfort

Outside air

SOUND LEVEL

Equipment location considerations

Isolation, mounting pad, duct, and structure

Duct systems

DESIGN CONSIDERATIONS - EQUIPMENT

SPLIT SYSTEMS

System designs - closets, basements, etc.

Refrigerant piping

Equipment location

Electrical layouts

Duct design / balancing

Condensate drains

Ventilation - fresh air

Regional design considerations

Ventilation - equipment

Secondary condensate drains / pans

Mounting of equipment

PACKAGED SYSTEMS

Package system configurations and design

Equipment locations design

Applications for packaged systems

Basic duct designs for packaged equipment

Condensate drain piping design

Electrical layouts with packaged air conditioners

Packaged equipment in single story applications

Packaged equipment in multi story applications

Packaged equipment in crawlspace applications

Heat options with packaged systems

Ventilation options

Regional considerations in packaged equipment

DESIGN CONSIDERATIONS - COMPONENTS

DIFFUSERS, REGISTERS, AND GRILLES

Selecting diffusers, grilles, and registers

Modifying locations

ACCESSORIES

Start components

Filter-driers - When to use? and How to select?

Filtering - EAC, media, HEPA, electrostatic

RECOVERY/RECYCLING MACHINES

RECOVERY MACHINES

Introduction to recovery machines

Types and styles of recovery machines

Typical recovery procedures

Recovery machine maintenance and cylinder maintenance

RECYCLING MACHINES

Introduction to recycling machines

Types and styles of recycling machines

Typical recycling procedures

Recovery machine maintenance and cylinder maintenance

MECHANICAL CODE

EQUIPMENT ACCESS

Minimum clearance

Electrical disconnects

Fire dampers

REFRIGERANT LINE ROUTING

Support requirements

Inspection requirements

CONDENSATE DRAINS

Materials

Sizing

$$\frac{\text{CFM}_n}{\text{CFM}_o} = \frac{\text{RPM}_n}{\text{RPM}_o}$$

o = old, n = newCFM and RPM are interchangeable.

$$CFMn = CFMo X RPM = RPMo X CFM$$

$$\left(\frac{\text{CFM}_n}{\text{CFM}_o}\right)^2 = \frac{\text{Sp}_n}{\text{Sp}_o}$$

$$CFM_n = CFM_o X \sqrt{\frac{Sp_n}{Sp_o}}$$

$$\left(\frac{\text{CFM}_n}{\text{CFM}_o}\right)^2 = \frac{\text{Sp}_n}{\text{Sp}_o}$$
 $\Rightarrow_{CFMo} = \text{JSpp};$ $\Rightarrow_{CFM_n} = \text{CFM}_o \times \sqrt{\frac{\text{Sp}_n}{\text{Sp}_o}}$ $\Rightarrow_{CFM_o} \times \left(\frac{\text{CFM}_n}{\text{CFM}_o}\right)^2$

$$(CF_{o}^{T})^{3} = BHP_{o}$$
 Or $CFM_{o} = BHP_{o}$ $CFM_{n} = CFM_{o} \times \sqrt[3]{\frac{BHP_{n}}{BHP_{o}}}$ $BHP_{o} = BHP_{o} \times (CFM_{o}^{T})^{3}$

$$CFM_n = CFM_o X \sqrt[3]{\frac{BHP_n}{BHP_o}}$$

внр
$$_0 = _{\text{внр}_0} \times (^{\text{CFM}_0})^3$$

Hydronics:

$$AP = Sp$$
, $CFM = GPM$, $RPM = GPM$

$$MAT = (OATx \%OA) + (RATx \%RA)$$

0 = Outside

T = Temperature

R = Return

M=Mixed

A=Air

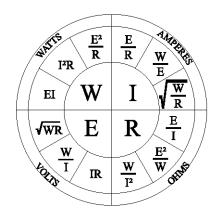
Btuh hydronic (H_2 0 only) = 500 x GPM x AT Btuh sensible (at sea level) = $1.08 \times CFM \times AT$ Btuh latent (at sea level) = $0.68 \times CFM \times AGrains$ Btuh total (at sea level) = $4.5 \times CFM \times AEnthalpy$

$$V=4005 \times .Jvp$$

$$Vp = <4:05)2$$

Pressure $(PSI) = 0.433 \times Head$ (feet of water)

1IWC = 0.0360 PSI $1 \, PSI = 27.72 \, IWC$


Pressure 1 x Volume $1 = Pressure 2 \times Volume 2$

 $Area = 1t \times radius^2$

$$A^2 + B^2 = C$$

Circumference 1t

$$FR = \begin{array}{c} ASP \times 100 \\ FE = TEL \end{array}$$
 (IWqIOO)

Rectangular Duct Area (ft2) =
$$\frac{Length \times Width}{144}$$

Round Duct Area (
$$ft2$$
) = $\frac{1 \text{tx} diameter}{576}$

$$mfd = (2650 \times I)$$

 $CFM = Velocity (fpm) \times Duct Area (ft^2)$

$$\mathsf{CFM} - \frac{(Watts \times 3.413)}{(ATx \, 1.08)}$$

$$C_T$$
 (Parallel) = $C_1 + C_2 + ... + C_N$

TEMPERATURE PRESSURE CHART-atsealevel

Pressure (PSIG), Vacuum (in. Of Hg)-Bold Italic Figures

To determine subcooling for 404A, 407C, and 4220, use BUBBLE POINT values (temperatures above 50°F -gray background) To determine superheat for 404A, 407C, and 4220, use DEW POINT values (temperatures 50°F and below)

CONTINUED

TEMPERATURE PRESSURE CHART-atsealevel

Pressure (PSIG), Vacuum (in. Of Hg)-Bold Italic Figures

To determine subcooling for 404A, 407C, and 4220, use BUBBLE POINT values (temperatures above 50°F -gray background) To determine superheat for 404A, 407C, and 4220, use DEW POINT values (temperatures 50°F and below)

TE	EMP.		R	EFRIGER.	ANT			
•f	OC	22	134a	404A	407C	410A	4220	507
32	0.0	57.5	27.8	72.4	52.1	101.2	55.2	75.8
33	0.6	58.8	28.6	73.9	53.4	103.3	56.5	77.4
34	1.1	60.2	29.5	75.5	54.8	105.4	57.9	79.0
35	1.7	61.5	30.4	77.1	56.1	107.5	59.3	80.7
36	2.2	62.9	31.3	78.7	57.5	109.7	60.6	82.3
37 38	2.8 3.3	64.3 65.7	32.2 33.1	80.3 82.0	58.9 60.3	111.9 114.1	62.0 63.5	84.0 85.7
36 39	3.9	67.1	34.1	83.7	61.7	114.1	64.9	87.5
40	4.4	68.6	35.0	85.4	63.2	118.6	66.4	89.2
42	5.6	71.5	37.0	88.8	66.1	123.2	69.4	92.8
44	6.7	74.5	39.0	92.4	69.2	127.9	72.5	96.4
46	7.8	77.6	41.1	96.0	72.3	132.8	75.6	100.2
48	8.9	80.8	43.2	99.8	75.5	137.8	78.9	104.0
50	10.0	84.1	45.4	103.6	78.8	142.9	82.2	108.0
52	11.1	87.4	47.7	1092	101.7	148.1	96.1	112.0
54	12.2	90.8	50.0	1133	105.6	153.5	998	116.1
56	13.3	94.4	52.4	117.4	109.6	159.0	103.6	120.4
58	14.4	98.0	54.9	121.7	113.7	164.7	107.4	124.7
60	15.6	101.6	57.4	126.0	117.9	170.4	111.4	129.1
62	16.7	105.4	60.0	1305	122.3	176.3	1154	133.7
64	17.8 18.9	109.3 113.2	62.7 65.4	1350 139.7	126.7 131.2	182.4 188.6	1195 123.8	138.3 143.1
66 68	20.0	117.3	68.2	139.7	131.2	194.9	123.8	143.1
70	21.1	121.4	71.1	149.3	140.5	201.4	132.5	152.9
72	22.2	125.7	74.1	154.3	145.4	208.0	137.1	158.0
74	23.3	130.0	77.1	1594	150.3	214.8	141.7	163.2
76	24.4	134.5	80.2	164.6	155.4	221.8	146.5	168.5
78	25.6	139.0	83.4	169.9	160.5	228.9	151.3	174.0
80	26.7	143.6	86.7	175.4	185.8	236.1	156.3	179.5
82	27.8	148.4	90.0	181.0	171.2	243.6	161.3	185.2
84	28.9	153.2	93.5	186.7	176.8	251.2	1665	191.0
86	30.0	158.2	97.0	1925	182.4	258.9	171.8	197.0
88	31.1	163.2	100.6	198.4	188.2	266.8	177.2	203.0
90 92	32.2 33.3	168.4 173.7	104.3 108.1	204.5 210.7	194.1 200.1	274.9 283.2	182.7 188.4	209.2 215.5
92 94	34.4	173.7	112.0	210.7	206.3	291.6	194.1	213.3
96	35.6	184.6	115.9	2234	212.5	300.3	200.0	228.6
98	36.7	190.2	120.0	230.0	219.0	309.1	206.0	235.3
100	37.8	195.9	124.2	236.8	225.5	318.1	212.1	242.2
102	38.9	201.8	128.4	243.6	232.2	327.2	218.4	249.2
104	40.0	207.7	132.7	250.8	239.0	336.6	224.8	256.3
106	41.1	213.8	137.2	257.8	245.9	346.2	2313	263.7
108	42.2	220.0	141.7	265.1	253.0	355.9	237.9	271.1
110	43.3	226.4	146.4	272.5	260.3	365.9	244.7	278.7
112	44.4	232.8	151.1	280.1	287.6	376.1	251.6	286.5
114	45.6	239.4	156.0	287.9	275.1	386.4	258.8	294.4
116 118	46.7 47.8	246.1 253.0	160.9 166.0	295.8 303.8	282.8 290.6	397.0 407.8	265.8 273.2	302.4 310.7
120	47.8	260.0	171.2	312.1	290.6 298.6	407.8	280.6	310.7
125	51.7	278.0	184.6	333.3	319.2	447.4	299.9	340.8
130	54.4	296.9	198.7	355.6	340.7	477.4	320.2	363.6
-20		_, 0.,						2 22.0